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Abstract. Fitness functions based on test cases are very common in
Genetic Programming (GP). This process can be assimilated to a learn-
ing task, with the inference of models from a limited number of samples.
This paper is an investigation on two methods to improve generalization
in GP-based learning: 1) the selection of the best-of-run individuals using
a three data sets methodology, and 2) the application of parsimony pres-
sure in order to reduce the complexity of the solutions. Results using GP
in a binary classification setup show that while the accuracy on the test
sets is preserved, with less variances compared to baseline results, the
mean tree size obtained with the tested methods is significantly reduced.

This paper is an experimental study of methodologies for Evolutionary Com-
putations (EC) inspired by common practices in the Machine Learning (ML)
and Pattern Recognition (PR) communities. More specifically, using Genetic
Programming (GP) for supervised learning, we aim at evaluating both the effect
of using a three data sets methodology (training, validation, and test sets) and
the effect of minimizing the classifiers complexity. Our experiments show that
these approaches preserve the performances of GP, while significantly reducing
the size of the best-of-run solutions, which is in accordance with Occam’s Razor
principle.

The structure of the paper goes as follow. Section 1 starts with a high-level
description of the tested approaches and their justifications. A presentation of
relevant work follows in Section 2. Thereafter, the methodology used in the
experiments is detailed in Section 3. Finally, Section 4 presents the experimental
results obtained on six binary classification data sets, and Section 5 concludes
the paper.



1 Introduction

GP is particularly suited for problems that can be assimilated to learning tasks,
with the minimization of the error between the obtained and desired outputs
for a limited number of test cases – the training data, using a ML terminology.
Indeed, the classical GP examples of symbolic regression, boolean multiplexer
and artificial ant [1] are only simple instances of well-known learning problems
(i.e. respectively regression, binary classification and reinforcement learning).
In the early years of GP, these problems were tackled using a single data set,
reporting results on the same data set that was used to evaluate the fitnesses
during the evolution. This was justifiable by the fact that these are toy problems
used only to illustrate the potential of GP. In the ML community, it is recognized
that such methodology is flawed, given that the learning algorithm can overfit
the data used during the training and perform poorly on unseen data of the same
application domain [2,3]. Hence, it is important to report results on a set of data
that was not used during the learning stage. This is what we call in this paper a
two data sets methodology, with a training set used by the learning algorithm and
a test set used to report the performance of the algorithm on unseen data, which
is a good indicator of the algorithm’s generalization (or robustness) capability.
Even though this methodology has been widely accepted and applied in the ML
and PR communities for a long time, the EC community still lags behind by
publishing papers that are reporting results on data sets that were used during
the evolution (training) phase. This methodological problem has already been
spotted (see [4]) and should be less and less common in the future.

The two data sets methodology prevents reporting flawed results of learn-
ing algorithms that overfit the training set. But this does not prevent by itself
overfitting the training set. A common approach is to add a third data set – the
validation set – which helps the learning algorithm to measure its generaliza-
tion capability. This validation set is useful to interrupt the learning algorithm
when overfitting occurs and/or select a configuration of the learning machine
that maximizes the generalization performances. This third data set is com-
monly used to train classifiers such as back-propagation neural networks and
can be easily applied to EC-based learning. But this approach has an important
drawback: it removes a significant amount of data from the training set, which
can be harmful to the learning process. Indeed, the richer the training set, the
more representative it can be of the real data distribution, and the more the
learning algorithm can be expected to converge toward robust solutions. In the
light of these considerations, an objective of this paper is to investigate the effect
of a validation set to select the best-of-run individuals for a GP-based learning
application.

Another concern of the ML and PR communities is to develop learning algo-
rithms that generate simple solutions. An argument behind this is the Occam’s
Razor principle, which states that between solutions of comparable quality, the
simplest solutions must be preferred. Another argument is the minimum de-
scription length principle [5], which states that the “best” model is the one that
minimizes the amount of information needed to encode the model and the data



given the model. Preference for simpler solutions and overfitting avoidance are
closely related: it is more likely that a complex solution incorporates specific
information from the training set, thus overfitting the training set, compared
to a simpler solution. But, as mentioned in [6], this argumentation should be
taken with care as too much emphasis on minimizing complexity can prevent
the discovery of more complex yet more accurate solutions.

There is a strong link between the minimization of complexity in GP-based
learning and the control of code bloat [1,7], that is an exaggerated growth of
program size in the course of GP runs. Even though complexity and code bloat
are not exactly the same phenomenon, as some kind of bloat is generated by
neutral pieces of code that have no effect on the actual complexity of the solu-
tions, most of the mechanisms proposed to control it [8,9,10,11] can also be used
to minimize the complexity of solutions obtained by GP-based learning.

This paper is a study of GP viewed as a learning algorithm. More specifi-
cally, we investigate two techniques to increase the generalization performance
and decrease the complexity of the models: 1) use of a validation set to select
best-of-run individuals that generalize well, and 2) use of lexicographic parsi-
mony pressure [10] to reduce the complexity of the generated models. These
techniques are tested using a GP encoding for binary classification problems,
with vectors taken from the learning sets as terminals, and mathematical op-
erations to manipulate these vectors as branches. This approach is tested on
six different data sets from the UCI ML repository [12]. Even if the proposed
techniques are tested in a specific context, we argue that they can be extended
to the frequent situations where GP is used as a learning algorithm.

2 Related Work

Some GP learning applications [13,14,15] have made use of a three data sets
methodology, but without making a thorough analysis of its effects. Panait and
Luke [16] conducted some experiments on different approaches to increase the
robustness of the solutions generated by GP, using a three data sets methodol-
ogy to evaluate the efficiency of each approach. Rowland [17] and Kushchu [18]
conducted studies on generalization in EC and GP. Both of their argumenta-
tions converge toward the testing of solutions in previously unseen situations for
improving robustness.

Because of the bloat phenomenon, typical in GP, parsimony pressure has
been more widely studied [9,19,20,21]. In particular, several papers [22,23,24]
have produced interesting results around the idea of using a parsimony pressure
to increase the generalization capability of GP-evolved solutions. However, a
counter-argumentation is given in [25], where solutions biased toward low com-
plexity have, in some circumstances, increased generalization error. This is in
accordance with the argumentation given in [6], which states that less complex
solutions are not always more robust.



Table 1. GP primitives used to build the classifiers.

Name # args. Description

ADD 2 Addition, fADD(x1, x2) = x1 + x2.
SUB 2 Subtraction, fSUB(x1, x2) = x1 − x2.
MUL 2 Multiplication, fMUL(x1, x2) = x1x2.

DIV 2 Protected division, fDIV(x1, x2) =

{

1 |x2| < 0.001
x1/x2 otherwise

.

MXF 2 Maximum value, fMXF(x1, x2) = max(x1, x2).
MNF 2 Minimum value, fMNF(x1, x2) = min(x1, x2).
ABS 1 Absolute value, fABS(x) = |x|.

SLN 1 Saturated symmetric linear function, fSLN(x) =







1 x > 1
−1 x < −1
x otherwise

.

SUM 1 Sum of vector’s components, fSUM(x) =
∑

i
xi.

MEA 1 Mean of vector’s components, fMEA(x) =
∑

i
xi

card(x)
.

MXV 1 Maximum of vector’s components, fMXV(x) = maxi xi.
MIV 1 Minimum of vector’s components, fMIV(x) = mini xi.

L2 1 L2 norm of the vector, fL2(x) =
√

∑

i
x2

i
.

E 0 Ephemeral random vector, generated by copying the value of a ran-
domly selected training set data.

X 0 Vector with the value of the data to classify.

3 Methodology

The experiments conducted in this work are based on a GP-setup specialized for
binary classification problems. The data processed by the primitives are vectors
of two possible sizes, either of size one (a scalar value), or of size n, the feature
set size. Table 1 presents the set of primitives used to build the programs.

Three main families of primitives were used: the mathematical function prim-

itives (ADD, SUB, MUL, DIV, MXF, MNF, ABS, and SLN), the vector-to-scalar

primitives (SUM, MEA, MXV, MIV, and L2), and the vectorial terminals (E
and X). The mathematical function primitives with two arguments (ADD, SUB,
MUL, DIV, MXF, and MIF) are defined to deal with arguments of different
sizes by applying the function to each component of the n-sized arguments,
when necessary repeatedly using the value of the scalar arguments. More for-
mally, if f(x1, x2) denotes the function associated to the primitive presented in
Table 1, the output of these primitives is:

– A scalar [f(x1(1), x2(1))], if both arguments are scalars;
– A size n vector [f(x1(1), x2(1)) f(x1(1), x2(2)) . . . f(x1(1), x2(n))]T , if the

first argument is a scalar and the second a vector;
– A size n vector [f(x1(1), x2(1)) f(x1(2), x2(1)) . . . f(x1(n), x2(1))]T , if the

first argument is a vector and the second a scalar;
– A size n vector [f(x1(1), x2(1)) f(x1(2), x2(2)) . . . f(x1(n), x2(n))]T , if both

arguments are vectors.



Table 2. Description of UCI data sets used for the experimentations.

Data # of
set Size features Application domain

bcw 699 9 Wisconcin’s breast cancer, 65.5 % benign and 34.5 % malignant.
cmc 1473 9 Contraceptive method choice, 42.7 % not using contraception and

57.3 % using contraception.
ger 1000 24 German credit approval, 70 % approved and 30 % not approved.
ion 351 34 Ionosphere radar signal, 35.9 % without structure detected and

64.9 % with a structure detected.
pid 768 8 Pima Indians diabetes, 65.1 % tested negative and 34.9 % tested

positive for diabetes.
spa 4601 57 Spam e-mail, 60.6 % non-junk e-mail and 39.4 % junk e-mail.

On the other hand, the vector-to-scalar primitives are defined to convert a vec-
tor argument of size n into a scalar output. When the argument is a scalar, it
is returned as output value as is, without modification, except for the L2 prim-
itive which returns the absolute value of the input scalar. Finally, the vectorial
terminals are always vectors of size n, with either randomly selected data of the
training set (terminal E), used as constants, or the value of the data to classify
(terminal X), used as the variable of the problem.

The data evaluated is classified according to the output of the GP tree, that is
assigned to the first class for an output value positive or zero, otherwise assigned
to the second class. If necessary, the output of the GP program is converted into
a scalar beforehand, by a summation of each vector’s components, as does the
primitive SUM.

In order to test the effect of using a validation set and applying some par-
simony pressure, GP will be tested on common binary classification data sets
taken from the Machine Learning Repository at UCI [12]. The selected data set
are presented in Table 2. The selection of these data sets was guided by the fol-
lowing main criteria: 1) select appropriate sets for binary classification, 2) select
appropriate sets for 10-folds cross-validation (see below), that is data sets with-
out predefined separated training and testing sets, and 3) select sets of relatively
large size or high dimensionality. The first two criteria were chosen in order to
fit into our general methodology, to avoid special data manipulations, while the
last criterion was postulated in an attempt to select not too easy data sets, that
should help to generate discriminant results.

Before the experiments, each data set was randomly divided into 10 folds
of equal size, taking care to balance the number of data of each class between
the folds. A 10-folds cross-validation [2] has been conducted using the data in 9
folds as the training set for an evolution, reporting the test set error rate on the
remaining fold. For each tested configuration, the process is repeated 10 times
for each fold, for a total of 100 evolutions per configuration. The reported results
consist in the means for these 100 evolutions.



Our experimentations are conducted on four different configurations:

1. Baseline: The fitness measure consists in minimizing the error rate on the
complete training set. The best-of-run individual is simply the individual of
the evolution with the lowest error rate on the training set, with the smallest
individual selected in cases of ties.

2. With validation: For each evolution, the training set is randomly divided
into two data sets: the fitness evaluation data set, with 67% of the training
data, and the validation set, with the remaining 33%. The class distribution
of the data is well-balanced between the sets. The fitness measure consists in
minimizing the error rate on the fitness evaluation set. At each generation,
a two-objective sort is conducted in order to extract a set of non-dominated
individuals (the Pareto front), with regards to the lowest fitness evaluation
set error rate and the smallest individuals. These non-dominated individuals
are then evaluated on the validation set, with the best-of-run individual
selected as the one of these with the smallest error rate on the validation
set, ties being solved by choosing the smallest individual.

3. With parsimony pressure: A lexicographic parsimony pressure [10] is ap-
plied to the evolution by minimizing the error rate on the complete training
set, using the individual size as second point of comparison in cases of identi-
cal error rates. As with the baseline configuration, the best-of-run individual
is the individual of the evolution with the lowest error rate on the training
set, with the smallest individual selected in cases of ties (strict equality).

4. With validation and parsimony pressure: A mix of the two previous
configurations, by separating the training set into two sets, the fitness eval-
uation set (67% of the data) and the validation set (33% of the data), and
making use of the lexicographic parsimony pressure. The fitness evaluation
set is used to compute the error rate that guides the evolution while the
validation set is used only to select the best-of-run individual. The selection
of this best-of-run individual is identical to the with validation configuration,
by extracting a Pareto front of the non-dominated individuals of the current
generation (fitness evaluation set error rates vs individual sizes). At each
generation, all these non-dominated individuals are tested on the validation
set. The best-of-run individual is selected as the solution that minimizes the
validation error rate, breaking ties by preferring the smallest individuals.

Thus, for the second and fourth settings, the Pareto front is extracted at
each generation for testing against the validation set. This is motivated by two
main reasons: 1) it is important to reduce the number of solutions tested against
the validation set, in order not to select best-of-run solutions that are just “by
chance” performing well on the validation set, and 2) it is desirable to test on
the validation set a range of solutions with different accuracy/size trade-offs.
It should be stressed that tournament selection is used in all evolutions, with
lexicographic ranking for the third and fourth configurations. Strictly speaking,
this is not a Pareto domination-based multi-objective selection algorithm.

Table 3 presents the GP parameters used during the experiments. No special
tweaking of these parameter values was done, which correspond in most cases



Table 3. Tableau of the GP evolutions.

Parameter Description and parameter values

Terminals and branches See Table 1.
Population size One panmictic population of 1000 individuals.
Stop criterion Evolution ends after 100 generations.

Replacement strategy Genetic operations applied following generational scheme.
Selection Tournaments selection with 2 participants (relative ranking).

Fitness measure Without parsimony pressure: minimize the error rate.
With parsimony pressure: minimize the error rate and,
in case of ties, select the smallest individuals (lexicographic
ranking).

Crossover Classical subtree crossover [1] (probability 0.7).
Standard mutation Replace a subtree with a new randomly generated one (prob-

ability 0.05).
Swap mutation Exchange a primitive with another of the same arity (proba-

bility 0.05).
Shrink mutation Replace a branch with one of its children and remove the

branch mutated and the other children’s subtrees (if any)
(probability 0.05).

Ephemerals mutation Randomly select a new ephemeral random vector (probability
0.05).

Reproduction Copy without modification an existing individual (probability
0.1).

Data normalization The data of the different sets are scaled in [−1, 1] along the
different dimensions.

to the default values of the software tool used. The experimentations have been
implemented using the GP facilities of the Open BEAGLE framework [26].

4 Results

Table 4 presents the detailed results obtained by testing the four configurations
presented in the previous section, using the six data sets of Table 2. The error
rates and tree sizes that are reported consist in the mean and standard deviation
values of the best-of-run individuals for the 100 runs (10 different runs for each
folds). The effort4 consists in a measure of the computations done during the
evolutions. It is calculated by summing the number of GP primitives evaluated
during the runs. More precisely, for configurations without validation, the effort
is computed by counting in the number of primitives in each individual times
the training set size, for all evaluated individuals during the run. For config-
urations with validation, the size of the individuals on Pareto front times the

4 Note that the notion of “effort” presented here is different from the one defined by
Koza in [1].



Table 4. Error rates, tree sizes and effort for the evolution of GP-based classi-
fiers using the UCI data sets. Results in italic are not statistically different from
those of the baseline configuration, according to a 95% confidence two-tailed Stu-
dent’s t-test. Results in bold are more than 50% smaller than the corresponding
baseline results.

Train set rate Valid. set rate Test set rate Tree size Effort
Mean Std. Mean Std. Mean Std. Mean Std. Mean Stdev.

Approach error dev. error dev. error dev. size dev. (×109) (×109)

bcw

Baseline 1.7 % 0.5 % – – 3.4 % 2.3 % 83.4 55.2 4.92 1.5
Validation 2.3 % 0.7 % 2.3 % 0.8 % 3 .3 % 2.3 % 34.2 38.8 4.08 1.2
Parsimony 2.1 % 0.5 % – – 3 .5 % 2.3 % 22.0 18.9 1.10 0.83

Both 2.8 % 0.7 % 2.7 % 1.0 % 3 .3 % 2.1 % 6.5 11.2 0.72 0.55

cmc

Baseline 26.3 % 2.2 % – – 31.2 % 4.8 % 174.8 68.2 11.2 3.5
Validation 28.6 % 3.2 % 30.8 % 3.0 % 32 .5 % 4.5 % 106.4 68.3 8.43 2.7
Parsimony 27.0 % 2.8 % – – 31 .7 % 4.9 % 151.6 62.4 10.1 3.9

Both 29.3 % 3.0 % 29.6 % 3.0 % 32 .1 % 5.0 % 63.7 39.8 6.17 2.2

ger

Baseline 22.7 % 1.6 % – – 29.3 % 3.8 % 175.3 77.9 7.43 2.7
Validation 25.3 % 2.6 % 27.3 % 1.5 % 29 .5 % 3.5 % 78.2 68.8 5.13 1.6
Parsimony 22 .6 % 1.7 % – – 29 .1 % 3.8 % 141.8 69.2 5.73 2.6

Both 25.7 % 2.7 % 26.7 % 1.6 % 29 .6 % 3.2 % 54.8 47.1 3.79 2.0

ion

Baseline 4.1 % 1.2 % – – 10.5 % 5.4 % 149.4 53.0 2.80 0.76
Validation 5.9 % 3.1 % 7.5 % 3.5 % 11 .3 % 6.8 % 94.2 56.3 2.08 0.55
Parsimony 4 .2 % 1.3 % – – 10 .1 % 6.0 % 84.4 38.8 1.88 0.59

Both 7.7 % 2.9 % 7.5 % 2.8 % 11 .0 % 6.3 % 41.6 28.3 1.10 0.35

pid

Baseline 19.9 % 1.2 % – – 25.2 % 4.5 % 149.5 56.8 5.47 1.6
Validation 22.0 % 2.1 % 22.9 % 2.2 % 25 .2 % 4.5 % 60.4 55.5 4.25 1.3
Parsimony 20.1 % 1.2 % – – 24 .7 % 4.4 % 99.6 59.0 3.85 1.2

Both 23.5 % 2.0 % 22.4 % 2.0 % 25 .1 % 4.4 % 28.0 25.4 2.45 0.89

spa

Baseline 12.8 % 2.2 % – – 13.6 % 2.7 % 166.6 62.4 34.4 9.4
Validation 12 .9 % 2.3 % 13.7 % 2.7 % 13 .9 % 2.6 % 148.7 61.7 21.7 6.6
Parsimony 13 .3 % 2.6 % – – 14 .2 % 3.2 % 141.3 56.4 28.6 10.1

Both 13 .1 % 2.2 % 13.5 % 2.2 % 13 .9 % 2.5 % 109.3 47.0 18.7 6.4



Fig. 1. One-way analysis of variance (ANOVA) box plots of the best-of-run
solutions test set error rates. The center box is bounded by the first and third
quartiles of the data distribution, with the median as the central line in the box.
The notches surrounding the median show the 95% confidence interval of this
median. The whiskers above and below the boxes represent the spread of the
data value within 1.5 times the interquartile range, with the + symbol showing
outliers.
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validation set size is also taken into account. Italic results in Table 4 are not sta-
tistically different from the corresponding baseline result; hence all other results
are statistically distinct from the baseline.

Figure 1 presents the box plots that stem from a one-way analysis of variance
(ANOVA) conducted on the test set error rates. Looking at the results, it seems
that no approach is clearly superior to the others in term of test set accuracy.
But, taking a closer look we can see that the approach using both the validation
set and parsimony pressure reduces the variance of the test set error rates (first to
third quartile range) for the bcw, ger, pid and spa data sets, having a comparable
or slightly worse variance for the two other sets. This is an important result as
getting reproducible and stable solutions is often more interesting than finding
only infrequently a marginally better individual.

Taking a closer look at the error rates on the different sets in Table 4, impor-
tant differences can be noted between the train and validation set rates, on one
hand, and the test set rates on the other hand. The differences between the train
and test rates can be explained by an overfitting of the training data. But, it is
surprising to see the importance of the differences between the validation and



Fig. 2. One-way analysis of variance (ANOVA) box plots of the best-of-run
solutions tree sizes.
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test rates. This may indicate that, because too many solutions are still tested
against the validation set at each generation, the risk of selecting solutions that
fit the validation set “by chance” is not negligible.

Figure 2 presents the one-way ANOVA box plots for the best-of-run tree sizes.
This time, it seems clear that the tested methods significantly reduce the best-of-
run individual tree sizes for all tested data sets. It is interesting to note that the
configurations with a validation set have generated significantly smaller best-of-
run individual tree sizes compared with the parsimony pressure only approach.
This is expected given that the validation set is directly used in the best-of-run
individual selection process, while the parsimony pressure is used only to limit
the tree sizes during the runs. Also, the important size reduction of the best-
of-run solutions, especially noticeable with the combination of validation and
parsimony pressure, is valuable when simplicity or comprehensibility is necessary
for the application at hand. Finally, taking a look at the mean effort in Table
4, the reduction goes up to 50 % with the validation and parsimony pressure
approach, compared to the baseline effort.

5 Conclusion

In this paper, methodologies were investigated to improve GP as a learning
algorithm. More specifically, using the GP-based setup for binary classification,
the use of a validation set for selecting best-of-run individuals was tested, in order



to pick solutions that generalize well. The effect of a lexicographic parsimony
pressure was also tested, in order to avoid unnecessary complexity in the evolved
solutions. Experimental results indicate that the use of a validation set improves
a little the stability of the best-of-run solutions on the test sets, by maintaining
accuracy while slightly reducing variance in most cases. This is important given
the stochastic nature of GP, which can introduce important variations of the
results, from one run to another. Moreover, it was shown that mild parsimony
pressure applied during evolutions can sustain performance in general, while
effectively reducing both solution size and effort. The combination of these two
approaches apparently gives the best of both worlds, by reducing the variance of
test set errors, simplifying drastically the complexity best-of-run solutions, and
cutting down effort by half.

As future work, still using a GP-based learning setup, it is planned to develop
new stopping criteria based on the difference between training and validation
set error rates. It is also planned to study the effect of changing the test cases
during the course of the evolution for GP-based learning, using methods such as
competitive co-evolution and boosting.
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References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (MA), USA (1992)

2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Second edn. John
Wiley & Sons, Inc., New York (NY), USA (2001)

3. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
4. Eiben, A.E., Jelasity, M.: A critical note on experimental research methodology

in EC. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002), Honolulu (HI), USA, IEEE Press (2002) 582–587

5. Rissanen, J.: Modeling by shortest data description. Automatica 14 (1978) 465–
471

6. Domingos, P.: The role of occam’s razor in knowledge discovery. Data Mining and
Knowledge Discovery 3(4) (1999) 409–425

7. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. Genetic
Programming and Evolvable Machines 3(1) (2002) 81–91

8. Langdon, W.B.: Size fair and homologous tree genetic programming crossovers.
Genetic Programming and Evolvable Machines 1(1/2) (2000) 95–119
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26. Gagné, C., Parizeau, M.: Open BEAGLE: A new versatile C++ framework for
evolutionary computation. In: Late-Breaking Papers of the 2002 Genetic and Evo-
lutionary Computation Conference (GECCO 2002), New York (NY), USA (2002)

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Genetic Programming, Validation Sets, and Parsimony Pressure
	Christian Gagné (INRIA), Marc Schoenauer (INRIA), Marc Parizeau (Université Laval), Marco Tomassini (Université de Lausanne)

