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Abstract

We present an entropic Quantum Drift Diffusion model (eQDD) and show how it
can be derived on a bounded domain as the diffusive approximation of the Quantum
Liouville equation with a quantum BGK operator. Some links between this model
and other existing models are exhibited, especially with the Density Gradient (DG)
model and the Schrödinger-Poisson Drift Diffusion model (SPDD). Then a finite
difference scheme is proposed to discretize the eQDD model coupled to the Pois-
son equation and we show how this scheme can be slightly modified to discretize
the other models. Numerical results show that the properties listed for the eQDD
model are checked, as well as the model captures important features concerning the
modeling of a resonant tunneling diode. To finish, some comparisons between the
models stated above are realized.

Key words: entropic Quantum Drift Diffusion, density matrix, Quantum
Liouville, Density Gradient, Schrödinger Poisson Drift Diffusion, resonant
tunneling diode, current-voltage characteristics

1 Introduction

Miniaturization of semiconductor devices to the nanometer scale increases
the role of quantum effects in electron transport. Moreover, new classes of
devices operate on the basis of these quantum effects. This is the case for the
resonant tunneling diode (RTD) which has attracted and continues to attract
interest due to its highly nonlinear static current-voltage characteristic. This
device exhibits a negative and non monotonous resistance in a certain range of



applied biases, which is interesting in many applications to logic electronics.
The RTD conduction band involves a double potential barrier with one or
several resonant energy levels within the well inside the two barriers. Only
electrons with energies close to the resonant energy can pass through the
double barrier thanks to tunneling effects. Changing the applied bias changes
the energy of the incident electrons and increasing the bias can lower the
current [10].

The Classical Drift-Diffusion model has been a valuable tool for many years
in the semiconductor industry [32] but it is not adapted to the modeling of
such devices. In order to capture tunneling effects, one has to use a quantum
model. At the microscopic scale, one can use the Schrödinger or the Wigner
equation as it is done in [29, 34, 39, 35, 37, 8]. But these models are ballistic
quantum models and taking into account collisions in this context is a difficult
task. In RTDs, the electron transport in the vicinity of the double barriers can
be expected to be quantum and collisionless while transport in the access zone
is mainly classical and collisional. This is why a class of hybrid models was
developped [1, 13, 9, 27] but the coupling methodology is far from obvious.

An alternative way for modeling quantum effects is by adding quantum cor-
rections terms to classical macroscopic models. The most common quantum
correction involves the Bohm potential, which naturally appears in quantum
hydrodynamics. In a fluid context, such models were studied in [20, 21, 22,
23, 24, 25, 26]. In a diffusive context, one can find the energy transport model
corrected with the Bohm potential [11] and, closer to the eQDD model studied
in this paper, the Drift-Diffusion model corrected with the Bohm potential,
called Density-Gradient (DG) model (also ”Quantum Drift-Diffusion model”
in the literature). This model was derived in [6, 5] and studied in [41, 28, 4].
But the Bohm potential has the disadvantage of bringing higher order differ-
ential terms which are difficult to handle numerically and mathematically. To
conclude this description, one can also cite another recent attempt to include
quantum effects in a diffusive model: the Schrödinger-Poisson Drift-Diffusion
model (SPDD) derived in [38] and implemented in [12]. This model takes into
account the discrete spectrum of energy states for the electrons inside the
expression of the density.

In this paper, we propose to use the entropic Quantum Drift-Diffusion (eQDD)
model. This model was derived following the moment closure approach devel-
oped in [31] and extending it to the context of Quantum mechanics. The
strategy consists in defining the notion of ”local” quantum equilibrium as
the minimizer of an entropy functional under local moment constraints. Such
equilibria are defined thanks to a relation between the thermodynamic quan-
tities (such as the chemical potential) and the extensive quantities (density,
current,...) in a non local way. In [17], quantum hydrodynamic (QHD) mod-
els were derived from the Wigner equation by moment expansions closed by
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these quantum equilibria. In this reference, new directions related to these
QHD models were sketched, including namely the setting up of a rigorous
framework to this formal modeling, the inclusion of other quantum effects
(Pauli exclusion principle, spin effects,...), or the numerical discretization and
simulation. Following the same approach, a family of ad-hoc collision oper-
ators which decrease the quantum entropy and relax to the equilibria were
introduced in [16]. Afterwards, this strategy was applied in [14] in order to
derive the eQDD model and the Quantum Energy-Transport (QET) model.
The eQDD model was written in a more convenient way in the review article
[15]. The first attempt to study the model mathematically and numerically
was achieved in [18, 19]. The non local relation between the chemical potential
and the density makes the model difficult to analyze. The question of the well
posedness of the model has not been answered yet but a semidiscretized (in
time) version of this model was proposed and rigorously analyzed, as well as
a fully discretized version.

The model properties are listed briefly. By construction, the eQDD model
takes into account collisions. In [15, 19], we have shown that steady states of
this model are solutions of the stationary Schrödinger-Poisson system (stud-
ied in [36] for example). Moreover, it is built in order to be consistent with
entropy dissipation and the density is always nonnegative (provided the solu-
tion exists). Some links were exhibited in [14] between the eQDD model and
two other models stated above: the Classical Drift-Diffusion model on the one
hand and the Density-Gradient model on the other hand. Indeed, the limit
of the eQDD model as the dimensionless Planck constant goes to zero is the
Classical Drift-Diffusion model, while the leading order correction term is the
Bohm potential.

The aim of this paper is to propose a discretization of the eQDD model on a
bounded domain and to check that the above stated properties are numerically
verified. We also show that the model can capture the main features of a
resonant tunneling diode and compare the eQDD model with the SPDD model
and the DG model.

The paper is organized as follows. In section 2, the eQDD model is presented
(which is justified in Appendix A by applying formally a diffusive limit to the
collisional Quantum Liouville equation). Then links between the eQDD model
and the other existing models are briefly given. In section 3, we discretize
the models using finite-differences and we perform numerical experiments in
section 4. The eQDD model and the SPDD model are compared one to each
other on an isolated RTD while the eQDD model and the DG model are
compared on a RTD connected to reservoirs, allowing us to compute current-
voltage characteristics.
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2 Presentation of the models

In this section, we present the entropic Quantum Drift-Diffusion model on a
bounded domain (the derivation of this model can be found in appendix A)
and we give some links with other existing models. For the sake of readability,
parameters like the effective mass, the permittivity and the mobility are sup-
posed constant throughout the device. The reader should refer to appendix B
where the models are written with variable parameters.

2.1 The entropic Quantum Drift-Diffusion model (eQDD)

2.1.1 Presentation

In this subsection, the entropic Quantum Drift-Diffusion model is presented
on a bounded domain (the boundary conditions will be given in subsection
2.1.3). Let Ω be a regular domain of R

d (d = 1, 2 or 3) . The eQDD model is
a quantum fluid model describing the evolution of the electron density n(t, x)
subject to the electrical potential V (t, x) and interacting with a thermal bath
of fixed temperature T . The first equation is the equation of mass conservation
and reads:

e∂tn− divj = 0, (1)

where e is the positive electron charge and j is the current defined as follows:

j = eµn∇(A− V ). (2)

In this equation, µ is the electron mobility. We call A(t, x) the quantum chem-
ical potential which is linked to the density of electrons by a relation which is
non local in space and which is the key of this quantum model:

n[A] =
∑

p≥1

exp(−λp[A]

kBT
)|ψp[A]|2. (3)

Here kB is the Boltzmann constant and (λp, ψp)p≥1 are the eigenvalues and
the normalized eigenfunctions of the following modified Hamiltonian (where
the electrical potential is replaced by the quantum chemical potential):

H [A] = − ~
2

2m
∆ − eA, (4)

where ~ is the Planck constant and m is the effective mass of an electron.

The electrical potential V can be split into a given external potential Vext

(assumed independent of time for simplicity) and a self consistent potential
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Vs created by the difference between a given doping density C and the electron
density n according to the following Poisson equation:

−ε∆Vs = e(C − n), (5)

where ε is the permittivity of the semiconductor.

2.1.2 Scaling

Before introducing the other models, it is useful to rewrite the eQDD model
in a scaled form. We take for reference density n, the maximum value of the
doping profile throughout the device: n = max |C|. We assume that the device
has a characteristic length x = L and voltages are scaled with respect to the
thermal potential: V = kBT

e
. Finally, we take the following reference values

for the time and the current: t = L2e
µkBT

and j = µkBTn
Le

. Then we write the
following dimensionless quantities:

n′ =
n

n
; x′ =

x

x
; j′ = −j

j
; t′ =

t

t
; V ′ = −V

V
; A′ = −A

V
+ logn ;

and obtain the eQDD model coupled with the Poisson equation (forgetting
the primes):

∂tn + divj = 0, (6)

j = n∇(A− (Vs + Vext)), (7)

−α2∆Vs = n− C, (8)

n =
∑

p≥1

e−λp[A]|ψp[A]|2, (9)

where (λp[A], ψp[A]) are the eigenvalues and eigenfunctions of the Hamiltonian

H [A] = −β2∆ + A,

α and β being the scaled Debye length and the scaled de Broglie length:

α=

√

εkBT

e2L2n
=
λD

L
, (10)

β=

√

~2

2mL2kBT
=
λdB

L
. (11)
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2.1.3 Boundary conditions

Boundary conditions for the wave functions. We have chosen for the
wave functions Neumann boundary conditions permitting to define a density
which does not vanish on the boundary as we need to allow a current flow to
exist:

∀p ≥ 1 ∇ψp · ν = 0 on ∂Ω, (12)

where the boundary is denoted by ∂Ω and ν(x) is the outward unit normal
vector at x ∈ ∂Ω.

Boundary conditions for the potentials. In this work, two classes of
boundary conditions will be studied:

• Insulating boundary conditions. The total number of particles in the domain
is enforced to be constant by putting Neumann boundary conditions on the
electrochemical potential (and thus the current vanishes on the boundary):

∇(A− (Vs + Vext)) · ν = 0 on ∂Ω.

Moreover, no bias is applied on the device, which is translated by the fol-
lowing Dirichlet conditions on the electrical potential:

Vs = 0 on ∂Ω.

• Open boundary conditions. In order to allow a current flow at the boundary,
non homogeneous Dirichlet conditions are applied on the density:

n =
∑

p≥1

e−λp[A]|ψp[A]|2 = C on ∂Ω,

and non homogeneous Dirichlet conditions on the electrical potential Vs:

Vs = V0 on ∂Ω.

The function V0(x) permits to control the bias applied on the device.

2.1.4 Properties of the isolated system

Entropy dissipation. An important property of the eQDD model coupled
to the Poisson equation is that, if we choose boundary conditions isolating the
domain Ω, the macroscopic quantum free energy G defined by

G =
∫

Ω
−n(A− Vext) +

α2

2
|∇Vs|2 dx

is a decreasing function of time:

d

dt
G = −

∫

Ω
n|∇(A− (Vs + Vext))|2 dx ≤ 0.
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This property is a consequence of the method of the model derivation (see
appendix A) where the density matrix is chosen to minimize the microscopic
quantum free energy and thus the system is at any time in a local equilibrium.

Steady states. Another interesting property of the eQDD model with insulat-
ing boundary conditions is that steady states are solutions of the Schrödinger-
Poisson model (SP). Let (n,A, Vs) be a steady state of (6)-(9) such that
∫

Ω n(x)dx = N , then there exists a constant ǫF (the quantum quasi Fermi
level) such that A− (Vs + Vext) = ǫF and (n, Vs, ǫF ) is the unique solution of
the Schrödinger-Poisson model under a constraint of total charge:

−α2∆Vs = n− C, (13)

n =
∑

p≥1

eǫF−λp |ψp|2, (14)

∫

Ω
n(x)dx = N, (15)

where (λp, ψp) are the eigenvalues and the normalized eigenfunctions of the
Hamiltonian: H = H [Vs + Vext] = −β2∆ + (Vs + Vext).

2.2 Links with other existing models

2.2.1 The Classical Drift-Diffusion model (CDD)

Presentation. We are going to present now the classical counterpart of the
eQDD model. The CDD model coupled to the Poisson equation can be written
with the same dimensionless parameter α and is independent of the scaled
Planck constant β:

∂tn + divj = 0, (16)

j = n∇(− logn− (Vs + Vext)), (17)

−α2∆Vs = n− C. (18)

The term n∇ log n = ∇n is the diffusion term of the current and n∇(Vs+Vext)
is the drift term. The same boundary conditions as for the eQDD model can be
used: Neumann conditions on − log n− (Vs +Vext) permit to isolate the device
while Dirichlet conditions on the density n allow a current at the boundary
(the conditions for the electrical potential are unchanged).

Link with the eQDD model. In order to display a link between the eQDD
model (6)-(9) and the CDD model (16)-(18), it is possible to expand the
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density for the eQDD model (9) in powers of the scaled Planck constant β
(see [14]). Let A be a smooth function of x, then:

n[A] =
∑

p≥1

e−λp[A]|ψp[A]|2 = n0e
−A + O(β2), (19)

where n0 = (4πβ2)d/2 is the effective density of states. This gives:

A = − logn + logn0 + O(β2). (20)

Putting this relation in (7), we find the expression of the current for the CDD
model (17). The difference between the eQDD model and the CDD model
being of order β2, we will note formally:

eQDD − CDD = O(β2).

2.2.2 The Density Gradient model (DG)

Presentation. The difference between the DG model and the CDD model
lies in a term of order β2 (called the Bohm potential) that is added in the
current expression (only equation (17) changes and is replaced by equation
(22)):

∂tn + divj = 0, (21)

j = n∇(− logn− (Vs + Vext + VB)), (22)

−α2∆Vs = n− C, (23)

VB = −β
2

3

∆
√
n√
n
. (24)

Since this is a fourth order parabolic system, we need an additional boundary
condition. The most standard choice consists in an homogeneous Dirichlet
conditions on the Bohm potential, assuming there is no quantum effect on the
boundary (see [28]):

VB = 0 on ∂Ω. (25)

Link with the eQDD model. We want to show a link between the eQDD
model (6)-(9) and the DG model (21)-(24). If the terms of order β2 are ex-
plicitely written in the expansion (19), one obtains:

n[A] =
∑

p≥1

e−λp[A]|ψp[A]|2 = n0e
−A

(

1 +
β2

12
(−2∆A + |∇A|2)

)

+ O(β4). (26)
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Using relation (20), it follows:

A = − log n + logn0 +
β2

3

∆
√
n√
n

+ O(β4). (27)

Putting this relation in (7), we find the expression of the current for the DG
model (22).

The difference between the eQDD model and the DG model being of order
β4, we will note formally:

eQDD − DG = O(β4).

2.2.3 The Schrödinger-Poisson Drift-Diffusion model (SPDD)

Presentation: The simplified version of the Schrödinger-Poisson Drift-Diffusion
model introduced in [38] is very close to the eQDD model, except that the ex-
pression of the density is different. In the SPDD model, electron density can
be expressed as:

n(x) =
∫ ∞

0
g(ǫ)e−A−ǫ dǫ, (28)

where g(ǫ) is the density of states corresponding to the energy ǫ. In a classical
model, we would have g(ǫ) = 2√

π
n0

√
ǫ while in the SPDD model, we have:

g(ǫ) =
∑

p≥1

δ(ǫ− λp[Vs + Vext] + (Vs + Vext)) |ψp[Vs + Vext]|2,

where δ is the Dirac delta function and λp[Vs + Vext] and ψp[Vs + Vext] are the
eigen elements of the Hamiltonian H = H [Vs + Vext] = −β2∆ + (Vs + Vext).
This gives the following system (only equation (9) changes in the eQDD model
and is replaced by (32)):

∂tn + divj = 0, (29)

j = n∇(A− (Vs + Vext)), (30)

−α2∆Vs = n− C, (31)

n =
∑

p≥1

e−λp−A+(Vs+Vext)|ψp|2. (32)

Link with the eQDD model. Both models can be linked in the case
where we take insulating boundary conditions. The SPDD model can then be
seen as an intermediate model between the eQDD model and the stationary
Schrödinger-Poisson system (13)-(15) in a situation close to the equilibrium.
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Indeed, if the current j = n∇(A−V ) is small, this means that the electrochem-
ical potential ϕ(x) = A(x) − V (x) is slowly variable. Then the commutator
between the Hamiltonian H = H [V ] = −β2∆ + V and ϕ(x) is small and a
”space-adiabatic” approximation can be performed in the expression of the
density given by the eQDD model:

neQDD =
∑

p≥1

e−λp[V +ϕ]|ψp[V + ϕ]|2

∼
∑

p≥1

e−λp[V ]−ϕ|ψp[V ]|2 = nSPDD.

For a discussion on space adiabatic approximation in the context of Born-
Oppenheimer approximation in molecular dynamics, one can refer for instance
to [40].

2.2.4 Summary

We can summarize the links between the eQDD model and the other models
with the following diagram:

(Semiclassical limit)

eQDD−→ DG −→ CDD

↓

(C
o
n
ve

rg
en

ce

to
th

e
eq

u
il
ib

ri
u
m

)

SPDD

↓
SP

3 Numerical Methods

3.1 Numerical scheme for the eQDD model

The space dimension is now d = 1 so that the domain Ω is (0, 1). Parameters
such as the mobility, the permittivity and the effective mass are now variable
(the reader should refer to appendix B where the models are written with
variable parameters). The eQDD model is discretized in time using a semi
implicit Euler scheme in order to preserve the quantum free energy dissipation.
We discretize the space variable using finite-differences. Let ∆t > 0 be the time
step and ∆x = 1

N+1
the space gridstep. The grid is composed of the points
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xi = i∆x for i = 0 · · ·N + 1, where N ∈ N. The unknowns are the chemical
potential Ak

i and the self consistent electrical potential V k
s,i at the point xi and

at the time tk = k∆t. For the sake of readability, we use the auxiliary variables
nk

i for the density and jk
i for the current.

The fully discretized scheme for the eQDD model coupled to the Poisson
equation reads for i = 1 · · ·N :

nk+1
i − nk

i

∆t
+
jk+1
i − jk+1

i−1

∆x
= 0, (33)

jk+1
i = µin

k
i

(Ak+1
i+1 − (Vext,i+1 + V k+1

s,i+1)) − (Ak+1
i − (Vext,i + V k+1

s,i ))

∆x
, (34)

− α2

∆x2 (εi(V
k+1
s,i+1 − V k+1

s,i ) − εi−1(V
k+1
s,i − V k+1

s,i−1)) = nk+1
i − Ci, (35)

nk+1
i =

∑

p≥1

exp(−λp[A
k+1])|ψp,i[A

k+1]|2, (36)

where (λp[A
k+1], ψp[A

k+1])p≥1 is the whole sequence of eigenvalues and eigen-
vectors of the (N + 2) × (N + 2) tridiagonal matrix Hk+1 discretizing the
modified Hamiltonian H [A(tk+1, x)]. This tridiagonal matrix Hk+1 is defined
by (for i = 1 · · ·N):

Hk+1
i,i−1 =− β2

∆x2

1

mi

,

Hk+1
i,i =

β2

∆x2 (
1

mi+1

+
1

mi

) + Ak+1
i ,

Hk+1
i,i+1 =− β2

∆x2

1

mi+1
,

and the other components Hk+1
i,j with j /∈ {i− 1, i, i+ 1} are zero. For each i,

the vector component mi of the effective mass is defined by:

mi =
1

∆x

∫ xi+1/2

xi−1/2

m(x)dx

The vectors defining the mobility of the electrons (µ), the permittivity of the
semiconductor (ε) as well as the doping profile (C) are calculated in the same
way.

Boundary conditions. The Neumann conditions on the eigenfunctions ψ
give for the matrix H :
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Hk+1
0,0 =

β2

∆x2

1

m0

+ Ak+1
0 , Hk+1

0,1 = − β2

∆x2

1

m1

,

Hk+1
N+1,N = − β2

∆x2

1

mN

, Hk+1
N+1,N+1 =

β2

∆x2

1

mN+1

+ Ak+1
N+1.

In order to complete the scheme, we prescribe boundary conditions on the
potentials:

• Insulating boundary conditions: We put homogeneous Dirichlet conditions
on the electrical potential Vs:

Vs,0 = 0 ; Vs,N+1 = 0.

The Neumann conditions on the electrochemical potential give:

(Ak+1
1 − (Vext,1 + V k+1

s,1 )) − (Ak+1
0 − (Vext,0 + V k+1

s,0 ))= 0,

(Ak+1
N+1 − (Vext,N+1 + V k+1

s,N+1)) − (Ak+1
N − (Vext,N + V k+1

s,N ))= 0.

• Open boundary conditions: We prescribe non homogeneous Dirichlet con-
ditions on the electrical potential, Vr being the parameter permitting to
control the applied bias:

Vs,0 = 0 ; Vs,N+1 = Vr.

The non homogeneous Dirichlet conditions on the density give:

nk+1
0 =

∑

p≥1

e−λp[Ak+1]|ψp,0[A
k+1]| = C0;

nk+1
N+1 =

∑

p≥1

e−λp[Ak+1]|ψp,N+1[A
k+1]| = CN+1.

Algorithm. Given an initial positive density n0 we solve the scheme for each
time step using Newton algorithm implemented with Matlab. It is well known
that the efficiency of the Newton method depends on the initial guess of the
variables. For all time steps k ≥ 2, it is natural to initialize the electrical
potential with V k−1

s and the chemical potential with Ak−1. For the first time
step, it is easy to solve the Poisson equation to find the electrical potential V 0

s

corresponding to the density n0 and thus we have a good initial guess. It is a
little bit more difficult to initialize the chemical potential A0. We have proved
in [19] the existence and uniqueness of the quantum chemical potential A0

corresponding to n0. It has been shown to be the solution of a minimization
problem which is easy to implement. Nevertheless, when β is very small (high
temperature), we can also initialize A by considering the semiclassical limit

n ≈
√

m
2β

√
π
e−A, giving A0 = − log n0 + 1

2
logm− log 2β

√
π. On the contrary, if

β is large, we can consider the limit (near the zero temperature) where the
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expression of the density is given by n ≈ e−λ1 |ψ1|2. This gives (we recognize

the Bohm potential appearing with a factor 3) A0 = − log (
∫

Ω n
0 dx)+β2 ∂2

x

√
n0

√
n0

.

Note that we have to solve an eigenvalue problem for each Newton iteration
which is numerically expensive (we use the Matlab function eigs). Hopefully,
the dependence on the eigenvalues is exponential and we need only the few
lowest ones. In fact, (36) is replaced by:

nk+1
i =

pmax
∑

p=1

exp(−λp[A
k+1])|ψp,i[A

k+1]|2.

The value of pmax is chosen such that N exp(−λpmax
) is below a small given

tolerance value; note that for this prediction we use the asymptotic formula:
λp ∼ β2p2π2 (valid for large p’s).

3.2 Numerical schemes for the other models

The DG and CDD schemes. For the discretization of the DG and CDD
model, we employ an exponential change of variable which permits to define
a scheme very similar to the one of the eQDD model. Let us note n = e−u, so
that we can rewrite the DG model as follows (here, we still assume that m, ε
and µ are independent of x for simplicity):

∂tn + divj = 0,

j = n∇(u− (Vs + Vext + V B)),

−α2∆Vs = n− C,

VB = −β
2

12
(−2∆u+ |∇u|2),

n = e−u.

Now the unknowns for the scheme are the uk
i and V k

s,i at the point xi and at
the time tk = k∆t. The scheme reads for i = 1 · · ·N :
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nk+1
i − nk

i

∆t
+
jk+1
i − jk+1

i−1

∆x
= 0,

jk+1
i = µin

k
i

(uk+1
i+1 − (Vext,i+1 + V k+1

s,i+1)) − (uk+1
i − (Vext,i + V k+1

s,i ))

∆x
,

− α2

∆x2 (εi(V
k+1
s,i+1 − V k+1

s,i ) − εi−1(V
k+1
s,i − V k+1

s,i−1)) = nk+1
i − Ci,

nk+1
i = e−uk+1

i

V k
B,i = − β2

12∆x2

(

− 2

mi

(uk
i+1 − uk

i ) +
2

mi−1

(uk
i − uk

i−1) +
1

mi

∣

∣

∣uk
i+1 − uk

i

∣

∣

∣

2
)

.

The boundary conditions can be easily deduced from the one applied for the
eQDD scheme and we add homogenous Dirichlet conditions on the Bohm
potential (see subsection 2.2.2):

VB,0 = VB,N+1 = 0. (37)

For the CDD model, we use the same scheme but VB,i = 0 for i = 0 · · ·N + 1.

Remark that fixing the density on the boundary (in the case of open boundary
conditions) automatically fixes the unknown uk

i on the boundary. For the
eQDD model, the relation between the quantum chemical potential A and the
density n being non local, the unknown A is not a priori fixed on the boundary.

The SPDD scheme. For the SPDD model, the only difference with the
scheme for the eQDD model lies in the expressions of the density and the
Hamiltonian which are modified in consequence:

nk+1
i =

∑

p≥1

exp(−λp[V
k+1
s + Vext] − Ak+1

i + V k+1
s,i + Vext,i) |ψp,i[V

k+1
s + Vext]|2,

where (λp[V
k+1
s +Vext], ψp[V

k+1
s +Vext]) are the eigen elements of the tridiagonal

matrix Hk+1 defined by (for i = 1 · · ·N):

Hk+1
i,i−1 =− β2

∆x2

1

mi
,

Hk+1
i,i =

β2

∆x2 (
1

mi+1
+

1

mi
) + V k+1

s,i + Vext,i,

Hk+1
i,i+1 =− β2

∆x2

1

mi+1

.

To complete the scheme, we add boundary conditions that can be easily de-
duced from the one applied for the eQDD scheme. All the schemes are solved
using the Newton algorithm.
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4 Numerical results

Our aim is to check the properties stated for the eQDD model in the two kinds
of situations: with insulating or open boundary conditions. We also want to
compare the eQDD model with the SPDD model and the DG model. For
the numerical investigations, the devices that we have chosen are resonant
tunneling diodes (RTD). For the use of the open boundary conditions, the
structure of the studied RTD is depicted in figure 1. It consists of two 5nm
barriers of Al0.3Ga0.7As separated by a 5nm well of GaAs. The double bar-
rier is sandwiched between two 5nm spacer layers and two 25nm GaAs highly
doped access zones (doping density equal to 1024m−3), while the channel is
moderately doped (doping density eqal to 1021m−3). For the use of the in-
sulating boundary conditions, the RTD is chosen with a doping profile equal
to 0. The schemes which have been developped in the previous sections have
been implemented in Matlab and the time and space steps are taken equal to
5 × 10−3 in the dimensionless units.
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Fig. 1. The double barrier resonant tunneling structure.

4.1 Insulating boundary conditions

4.1.1 The eQDD model

The parameters are all chosen independant of x in this case and are given
in table 1. The corresponding dimensionless parameters have values equal to
α = 1.7061 and β = 0.0625. The initial density is concentrated to the left of
the double barrier and figure 2 shows the evolution of electrons for the eQDD
model under insulating boundary conditions. Steady state is achieved at about
6000fs as confirmed by the next figure (figure 3) which demonstrates that the
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quantum free energy is no more evolving (the figure shows also clearly that
the quantum free energy is a decreasing function of time). Figure 4 displays
the evolution of the electrochemical potential ϕ(x) = A(x)− (Vs(x)+Vext(x))
and we can see that it is constant at t = 10000 fs (and equal to 0.0623V ).
At equilibrium, the density (which is a solution of the Schrödinger-Poisson
(SP) model) is perfectly symmetric and the mass has been conserved up to a
relative error of 10−4%.

effective mass m(kg) mobility µ(m2V −1s−1) permittivity ε(Fm−1) temperature T (K)

0.067 × 9.11e − 31 0.85 11.44 × 8.85e − 12 300

Table 1
Parameters used for the modeling of an isolated RTD.
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Fig. 2. Electron density at different times (t = 0, 10, 1000 and 10000 fs) for the
eQDD model.

4.1.2 Comparison between the eQDD model and the SPDD model

Figure 5 permits to compare the eQDD model, the SPDD model and the
stationary SP model. The dashed line shows the evolution of the relative
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Fig. 4. Electrochemical potential (ϕ(x) = A − (Vs + Vext)) at different times
(t = 0, 10, 1000 and 10000 fs).
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difference (in L2 norm) between the densities for the eQDD model and the
SPDD model while the solid line shows the evolution of the relative difference
between the densities for the eQDD model and the SP model. The eQDD and
the SPDD model are closer than the eQDD and the SP models (as suggested
in section 2.2) but the relative difference between the densities decreases with
the same rate.

The eQDD model and the SPDD model with insulating boundary conditions
seem very close but if we apply open boundary conditions and if the applied
bias is too high, it appears that the SPDD model is not as stable as the eQDD
model. The current oscillates and does not stabilize. This is why we have not
been able to plot current-voltage characteristics for the SPDD model. This is
perhaps due to the fact that the SPDD model is not entropic. However, we
have been able to compare IV curves for the eQDD model and the DG model
(see next section).
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Fig. 5. Comparison between the eQDD model and the SPDD model (dashed line),
and between the eQDD model and the SP model (solid line).

4.2 Open boundary conditions

4.2.1 The eQDD model

The goal of this subsection is to check if the eQDD model captures some
properties of a RTD and to analyse the influence of the effective mass on
the current-voltage characteristics. For each bias Vr applied on the diode, we
find the stationary state and we record the corresponding current j(Vr). We

consider that the stationary state is achieved when max(j)−min(j)
mean(j)

≤ 10−2 (this

constant was fixed heuristically).
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Let us first analyze the influence of the effective mass on the shape of the IV
curve. The temperature is chosen equal to 77K and the mobility is supposed
to be constant and equal to 0.85 m2V −1s−1. The permittivity is also supposed
to be constant and equal to 11.44 ε0. Figure 6 shows four different IV curves
with different values of the effective mass inside and outside the double bar-
riers. As pointed out in [33], this parameter appears to be critical to obtain
resonance with the DG model and it seems to be the same for the eQDD
model. To be more precise, an interesting feature that can be seen on figure
6 is that the IV curve is much more sensitive on m2 (the effective mass inside
the AlGaAs barriers) than on m1 (the effective mass in the GaAs, outside the
barriers). Note that with the most realistic physical values (m1 = 0.067me

and m2 = 0.092me), the IV curve does not show negative resistance and we
need to artificially increase the effective masses to see such phenomenon ap-
pear (this was also done for the DG model in [33, 41]). An explanation to this
phenomenon could be that the approximation of effective mass is unappropri-
ate for small distances (one barrier is only 50Å long). We can also see that as
expected, increasing the effective mass lowers the current.

Figure 7 shows the time evolution of the density from the peak to the valley
when the effective mass is m2 = 1.5 × 0.092me inside the barriers and m1 =
1.5 × 0.067me outside it (corresponding to the IV curve at the bottom right
of figure 6). To obtain this figure, we apply a voltage of 0.25V and wait for
the electrons to achieve the stationary state. Then we suddenly change the
value of the applied bias to 0.29V and we record the evolution of the density.
As expected, the density inside the well grows significantly and the stationary
state is achieved at about 1500fs.

A small density depletion can be observed on the edge, which does not seems
physical. It may be due to the choice in our model of Neumann boundary
conditions for the wave functions whereas open (or transparent) boundary
conditions should be preferable. However, because this ”boundary layer” ap-
pears inside the doped region, it does not seem to affect the current, but this
question requires more investigations.

The next two figures (fig. 8 and fig. 9) display the details of the reconstruc-
tion of the density from the eigenstates ψp (for p = 1 · · ·6) of the modified
Hamiltonian H [A]. The density e−λp |ψp|2 corresponding to each eigenstate is
plotted for two values of the applied bias, respectively corresponding to the
current peak (fig.8) and to the valley (fig.9). Table 4.2.1 shows the values of
the corresponding energies λp. Some interesting features can be pointed out.
First, the eigenstates split in three categories: three of them (p = 1, 3, 6) corre-
spond to wave functions which give rise to the density of incident electrons (on
the left hand side of the double barrier), one and only one (p = 4) describes
the electrons inside the well and two wavefunctions (p = 2, 5) correspond
to electrons on the right hand side of the double barrier. Table 4.2.1 shows
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clearly that the voltage shift has no incidence on the energies corresponding
to the incident electrons while the energies of the electrons on the right hand
side of the double barriers increase. An important change concerns the energy
corresponding to electrons which are trapped inside the well, starting with
an energy of 2.03eV and finishing with an energy of 1.70eV , explaining the
density increase in this region.

Lastly, figure 10 shows the transient current at the left contact (x = 0). As we
switch at time t = 0 out of the equilibrium state (j = 0), we can observe that
the current suffers one oscillation before achieving its equilibrium state at the
valley. Oscillations were also reported in [37] for example where a transient
Schrödinger Poisson model was used for the simulation. The current was highly
oscillatory because of the ballistic effects. Here, because of the diffusion effects,
we cannot expect the same behaviour. Note that the behaviour of the eQDD
model is again qualitatively similar to the DG model, the same phenomenon
having been reported in [28].

λ1 λ2 λ3 λ4 λ5 λ6 λ7

Peak 0.87 1.05 1.56 2.03 2.28 3.03 4.47

Valley 0.87 1.11 1.57 1.70 2.54 3.05 5.03

Table 2
Eigenvalues (Energies [eV]) of the modified Hamiltonian H[A] at the Peak and at
the Valley.

4.2.2 Comparison between the eQDD model and the DG model

In Figure 11, we show the results obtained with the Density Gradient model
using the same parameters as defined for the eQDD model. As we can see,
results are qualitatively similar but differ significantly even if the fourth power
of the scaled Planck constant β4 is between 10−6 and 10−4 depending on the
value of the effective mass. The current is much smaller for the DG model
and the peak-to-valley ratios are more important. This may be due to the
fact that the heterojunctions of the RTDs create discontinuities not only on
the external potential, but also on the quantum chemical potential and so the
error estimate made in (26) may not be valid because the quantum chemical
potential is not a smooth function. This is not surprising then that these two
models give different results on such a device. Even with a smoother exter-
nal potential (replacing the two step functions by two gaussians), it appears
that the current-voltage characteristics are still different for the two models
as suggested by figure 12. In order to avoid any confusion induced by the vari-
able mass (the link between both models having been written for a constant
effective mass), we take a mass constant and equal to 0.067×me. A parame-
ter which seems important for the models to fit is the height of the double
barriers. Indeed, even with a smooth external potential, if the height of the
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Fig. 6. Influence of the effective mass on the IV curve, m1 being the mass outside
the barriers, and m2 being the mass inside.

barriers is important, it appears that the density varies a lot, creating a Bohm
potential which is not small (in β2) as needed for the error estimate (27) to
be valid.

We have observed that we can fit the results obtained with the eQDD model
and the DG model dividing the effective mass (which is equivalent to mul-
tiplying the Bohm potential) by an appropriate constant in the DG model.
Astonishingly, not only the stationary current fits but also the time behaviour
of the density and the current, but we do not yet explain this fact which does
not seem to be a coincidence. Moreover, we have not found any convincing
physical explanation for this similarity. To finish, figure 13 shows the role of
the temperature on the current for an applied bias of 0.2V and for the three
models eQDD, DG and CDD with a constant mass equal to 0.067me. For fairly
large temperatures, the currents seem to converge to the same limit, due to
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Fig. 8. Density at the peak (Applied bias: 0.25V).
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Fig. 9. Density at the valley (Applied bias: 0.31V).
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Fig. 10. Transient Current density.

the high thermoionic effects. Moreover, the DG model seems closer from the
eQDD model than from the CDD model as discussed in section 2.2 (note that
β is small when T is large).
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Fig. 11. IV curves obtained with the DG model (m1 being the mass outside the
barriers, and m2 being the mass inside).

5 Summary and Conclusion

An entropic Quantum Drift-Diffusion model for transport in nanostructures
has been presented on a bounded domain. A discretization has been proposed
and numerical results have permitted to check the main properties of the
model such as entropy dissipation, mass conservation, and convergence to the
stationary Schrödinger-Poisson model. The eQDD model captures also some
interesting features of the resonant tunneling diode, such as the resonance
peak on the IV curve, characteristic of such a device. The model seems to
be quite sensitive to the value of the effective mass inside the double barrier.
The eQDD model has also been compared to the Schrödinger Poisson Drift
Diffusion model on the one hand and the Density Gradient model on the
other hand, showing interesting differences: The eQDD model is very close
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Fig. 12. Influence of the shape and the height of the double barrier on the Curren-
t-Voltage characteristics for the eQDD and DG models.

to the SPDD model near the equilibrium but seem to be more stable far
from the equilibrium (this is probably because it dissipates free energy). For
quantum devices such as RTDs with heterojunctions, the eQDD model and
the DG model are not so close quantitatively because of the discontinuity of
the potentials but they exhibit similar qualitative behaviour. In a near future,
we should incorporate in the eQDD model the continuous spectrum of the
modified Hamiltonian H by considering transparent boundary conditions for
the wave functions, adapting the work done for the Schrödinger equation in
[7, 3, 2, 37, 30].
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A Derivation of the eQDD model

In order to understand why this model dissipates quantum entropy, we are
going to recall how it can be derived from the Quantum Liouville equation
applying a diffusive limit. In article [14], the diffusive limit is performed on the
unbounded domain of dimension d (Rd) using the Wigner transform. Here, we
adapt this work to derive the eQDD model in the density matrix formulation,
which enables to work on a arbitrary set Ω ⊂ R

d (bounded or not) with a
characteristic size L. For the sake of simplicity we are going to suppose that
the effective mass m is constant in Ω, but all the following calculations can be
extended to the case of a variable effective mass.

Derivation of the model. A quantum particle system can be described by a
density operator ρ which is a positive hermitian, trace-class operator satisfying
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the collisional Liouville equation:

i~∂tρ = [H, ρ] + i~Q(ρ), (A.1)

where [H, ρ] = Hρ− ρH is the commutator of the Hamiltonian H = − ~2

2m
∆−

eV and the density operator and Q(ρ) is a collision operator describing the
interactions between particles and a thermal bath at temperature T . The
density of particles n(x) is defined weakly by:

∀φ
∫

Ω
n(x)φ(x)dx = Tr(ρφ), (A.2)

where on the right hand side, we interpret φ as the multiplication operator by
the function φ(x). In order to define this collision operator, we have to intro-
duce the quantum free energy and the Quantum Maxwellians. The microscopic
quantum free energy of a system is defined by:

G[ρ] = E[ρ] − TS[ρ], (A.3)

where E is the energy of the system and S is the quantum entropy. The entropy
is given by:

S[ρ] = −kBTr(ρ log ρ), (A.4)

and the energy is defined by:

E[ρ] = Tr(ρH). (A.5)

We obtain the following expression for the microscopic quantum free energy:

G[ρ] = Tr
(

ρkBT (log ρ+
H
kBT

)
)

. (A.6)

Now, we consider the problem of minimizing the quantum free energy G under
the constraint of given density n(x):

min{G[ρ] | ∀φ
∫

n(x)φ(x)dx = Tr(ρφ)}. (A.7)

Assuming that this minimization problem has a solution, this solution is given
by [17, 14]:

ρ[A] = exp(−H [A]

kBT
),

where H [A] is the modified Hamiltonian defined in relation (4) and A =
A(x) is a quantum chemical potential which is determined in such a way

that the density constraint in (A.7) is satisfied. We note Mρ = exp(−H[A]
kBT

)
the quantum Maxwellian which has the same density as ρ (i.e Tr(Mρφ) =
Tr(ρφ) ∀φ). Now, we define the collision operator as follows:

Q(ρ) =
Mρ − ρ

τ
. (A.8)
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where τ is the relaxation time of the collision operator which can be found from
the mobility of the material: τ = mµ

e
. We expect that, as in the classical setting,

this simple collision operator of BGK type provides a simple relaxation model
with similar features as physically more realistic operators. Now we want to
perform a diffusive limit on the quantum Liouville equation. For this purpose,
we start by doing the same scaling as in section 2.1.2 on the quantum Liouville
equation and we obtain (omitting the primes):

iε∂tρ
ε =

1√
2β

[H, ρε] + i
Mρε − ρε

ε
, (A.9)

where H = −β2∆ + V . The dimensionless parameter β is the scaled Planck
constant and the dimensionless parameter ε is the scaled mean free path de-
fined by:

ε =

√

kBT

m

τ

L
=
λmfp

L
.

A typical value of ε is ε ∼ 0.5 at T ∼ 77K. In smaller temperatures, ε can
be estimated to be small and the limit ε → 0 can be investigated. Even if ε
is not small, the limit ε → 0 can be believed to at least provides a reasonable
approximation of the problem.

Therefore, we are interested in the limit ε → 0. We assume that ρε → ρ0 as
ε→ 0. Then at leading order, we have Q(ρ0) = 0 which means that ρ0 belongs
to the null space of the collision operator Q. Thus, we deduce that there exists
a function A(x, t) such that

ρ0 = e−H[A], (A.10)

with H [A] the modified scaled Hamiltonian:

H [A] = −β2∆ + A.

Now we introduce the following Chapman-Enskog expansion:

ρε = Mρε + ερε
1. (A.11)

Then, clearly:
Mρε − ρε

ε
= −ρε

1.

Inserting this expression into equation (A.9) and taking the limit ε → 0 we
get:

ρ0
1 = − i√

2β
[H, ρ0]. (A.12)

Now, we compose equation (A.9) with the multiplication by a test function φ
and we take the trace. We use that, by definition, Tr((Mρ − ρ)φ) = 0 and we
get:

Tr(i∂tρ
εφ) − 1√

2βε
Tr([H, ρε]φ) = 0. (A.13)
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We can simplify this equation by noticing that:

Tr([H,Mρε]φ) = 0.

Indeed, H = H [Aε] − (Aε − V ) where Aε is such that Mρε = e−H[Aε], so that
[H,Mρε] = [H [Aε],Mρε ] − [Aε − V,Mρε ]. The first commutator is equal to
zero because the commutator between an operator and its exponential is zero.
The trace of the second commutator multiplied by φ is equal to zero because
of the cyclicity of the trace. We remind that ∀(a, b, c), we have Tr([a, b]c) =
Tr(a[b, c]) = Tr([c, a]b) so that Tr([Aε − V,Mρε]φ) = Tr([φ,Aε − V ]Mρε) = 0
(φ and Aε−V being operators of multiplication by functions). Equation (A.13)
becomes:

Tr(i∂tρ
εφ) − 1√

2β
Tr([H, ρε

1]φ) = 0

At the limit ε→ 0 and using (A.12), we obtain:

Tr(i∂tρ
0φ) +

1

2β2
Tr(i[H, [H, ρ0]]φ) = 0.

We again use the fact that the commutator between an operator and its ex-
ponential is zero, so

[H, ρ0] = −[A− V, ρ0].

Also using the cyclicity of the trace, we find that Tr([H, [A − V, ρ0]]φ) =
Tr([−β2∆, [A− V, ρ0]]φ) and we obtain:

Tr(i∂tρ
0φ) − 1

2β2
Tr(i[−β2∆, [A− V, ρ0]]φ) = 0.

Now, we can prove that

Tr([−β2∆, [A− V, ρ0]]φ) = 2β2Tr(ρ0∇φ · ∇(A− V )).

Indeed, using the cyclicity of the trace, we first see that Tr([−∆, [A−V, ρ0]]φ =
Tr(ρ0[[∆, φ], A−V ]), and second, a direct computation of the double commu-
tator leads to the fact that [[∆, φ], A − V ] = 2∇φ · ∇(A − V ). The density
being weakly defined by:

∀φ
∫

Ω
nφdx = Tr(ρ0φ), (A.14)

we finally obtain the following equality being true for every test function φ:

∫

Ω
(∂tnφ− n∇(A− V ) · ∇φ)dx = 0,

which gives after an integration by parts the dimensionless version of the
eQDD model (6)-(7) in a weak formulation.
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Entropic character of the model. We are now able to prove that the eQDD
model dissipates the quantum free energy. The scaled microscopic quantum
free energy reads:

G(ρ) = Tr(ρ(log ρ+ H)),

so that
d

dt
G(ρ) = Tr((log ρ+ H + Id)∂tρ).

This identity is not obvious and uses a formula for the derivative of G with
respect to ρ which can be found in [17] or [14]. Using the Liouville equation
(A.9), we obtain:

d

dt
G(ρε) = Tr((log ρε + H + Id)(−i [H, ρ

ε]

2β2ε
+

Mρε − ρε

2β2ε2
)).

But using the cyclicity of the trace, we find:

Tr((log ρε + H + Id)(−i [H, ρ
ε]

2β2ε
)) = 0,

and using the convexity of the quantum free energy, we have the inequality:

G′(ρε)(Mρε − ρε) = Tr((log ρε + H + Id)(Mρε − ρε)) ≤ G(Mρε) −G(ρε).

Because Mρε is chosen to minimize G, we finally have:

d

dt
G(ρε) ≤ 0.

This inequality is true at the limit ε → 0, giving the dissipation of the macro-
scopic quantum free energy:

G(n) =
∫

Ω
−n(A− V ) dx.

Relation between the density and the quantum chemical potential.

Note that if A belongs to L2(Ω) and if we choose for H [A] a domain such
that H [A] has a compact resolvent (putting Neumann conditions on the wave
functions for example), H [A] possesses an orthogonal basis of eigenfunctions
(ψp[A])p=1···∞ associated with the eigenvalues λ1[A] ≤ λ2[A] ≤ .... The relation
(A.14) between n and A takes a more explicit form:

n[A] =
∑

p≥1

exp(−λp[A])|ψp[A]|2, (A.15)

where the ψp are normalized:

∫

Ω
ψpψq = δpq.
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Indeed, we can write:

∀φ
∫

Ω
nφ dx=Tr(e−H[A]φ)

=
∑

p≥1

(

φe−H[A]ψp, ψp

)

L2(Ω)

=
∑

p≥1

∫

Ω
φe−λp|ψp|2 dx

=
∫

Ω
(
∑

p≥1

e−λp|ψp|2)φ dx,

defining weakly the density.

B The dimensionless models in dimension 1 with variable parame-

ters

In this section, for the sake of completeness, the dimensionless models with
variable mass, permittivity and mobility are written.

The eQDD model. The entropic Quantum Drift-Diffusion model coupled
with the Poisson equation is written:

∂tn + ∂xj = 0,

j = nµ(x)∂x(A− (Vs + Vext)),

−α2(∂xε(x)∂xVs) = C − n,

n =
∑

p≥1

e−λp |ψp|2,

where (λp, ψp) are the eigenvalues and eigenfunctions ofH [A] = −β2∂x(
1

m(x)
∂x)+

A, with α and β the scaled Debye length and the scaled de Broglie length:

α=

√

εkBT

e2L2n
=
λD

L
,

β=

√

~2

2mL2kBT
=
λdB

L
.

The reference values for the mobility µ,the effective mass m and the permit-
tivity ε are chosen as follows:

µ = max |µ(x)| ; m = max |m(x)| ; ε = max |ε(x)|
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The DG model and the CDD model. The Density Gradient model cou-
pled with the Poisson equation is written:

∂tn + ∂xj = 0,

j = nµ(x)∂x(− log n− (Vs + Vext + V B)) = 0,

−α2∂x(ε(x)∂xVs) = n− C,

VB = −β
2

3

∂x(
1
m
∂x

√
n)√

n
.

For the Classical Drift-Diffusion model, we take VB = 0.

The SPDD model. The Schrödinger-Poisson Drift-Diffusion model coupled
with the Poisson equation is written:

∂tn + ∂xj = 0,

j = nµ(x)∂x(A− (Vs + Vext)) = 0,

−α2∂xε(x)∂xVs = C − n,

n =
∑

p≥1

e−λp−A+(Vs+Vext)|ψp|2,

where (λp, ψp) are the eigenvalues and eigenfunctions of the Hamiltonian H =
H [Vs + Vext] = −β2∂x(

1
m(x)

∂x) + (Vs + Vext).
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