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A Survey of Finite Algebraic Geometrical
Structures Underlying Mutually Unbiased Quantum

Measurements

Michel Planat1, Haret C. Rosu2, Serge Perrine3, Metod Saniga4

The basic methods of constructing the sets of mutually unbiased bases in the
Hilbert space of an arbitrary finite dimension are reviewed and an emerg-
ing link between them is outlined. It is shown that these methods employ
a wide range of important mathematical concepts like, e.g., Fourier trans-
forms, Galois fields and rings, finite and related projective geometries, and
entanglement, to mention a few. Some applications of the theory to quantum
information tasks are also mentioned.

KEY WORDS: mutually unbiased bases; d-dimensional Hilbert space;
Galois fields and rings; maximally entangled states.

1 INTRODUCTION

Problems pertinent to quantum information theory are touching more
and more branches of pure mathematics, such as number theory, abstract
algebra and projective geometry. This paper focuses on one of the most
prominent issues in this respect, namely the construction of sets of mu-
tually unbiased bases (MUBs) in a Hilbert space of finite dimension. For
an updated list of open problems related to the development of quantum
technologies the reader is directed to the Quiprocon webside [1].

To begin with, we recall that two different orthonormal bases A and
B of a d-dimensional Hilbert space Hd with metrics 〈. . . | . . .〉 are called
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mutually unbiased if and only if |〈a|b〉| = 1/
√
d for all a∈A and all b∈B. An

aggregate of MUBs is a set of orthonormal bases which are pairwise mutually
unbiased. The MUBs have been first studied by Schwinger in 1960 [2]. Two
decades later, important results by Alltop [3] passed unnoticed and even
a well-published paper in quantum mechanics by Ivanović [4] still did not
trigger their systematic research. The latter began with the important paper
of Wootters and Fields [5] in which it has been found that the maximum
number of such bases cannot be greater than d+1. It is also known that this
limit is reached if d is a power of prime. Yet, a still unanswered question is if
there are non-prime-power values of d for which this bound is attained. It is
surmised [6] [7] that the maximum number of such bases, N(d), is equal to
1+min(pei

i ), the latter quantity being the lowest factor in the prime number
decomposition of d, d =

∏

i p
ei

i . But, for example, it is still not known [8]
whether there are more than three MUBs for d = 6, the lowest non-prime-
power dimension, although the latest findings of Wootters [9] (and an earlier
result of G. Tarry quoted in the last reference) seem to speak in favor of
this conjecture. Klappenecker and Rötteler [7] showed that at least 3 MUBs
exist in any dimension; for a recent presentation of a proof based on the
so-called Vandermonde matrices and some conditions for the existence of
more than 3 MUBs for any dimension, the reader is referred to a very recent
paper of Combescure [10].

MUBs have already been recognized to play an important role in quan-
tum information theory. Their main domain of applications is the field of
secure quantum key exchange (quantum cryptography). This is because
any attempt by an eavesdropper to distinguish between two non-orthogonal
quantum states shared by two remote parties will occur at the price of
introducing a disturbance into the signal, thus revealing the attack and al-
lowing to reject the corrupted quantum data. Until recently, most quantum
cryptography protocols have solely relied, like the original BB84 one, upon
1-qubit technologies, i.e., on the lowest non-trivial dimension (d = 2), usu-
ally the polarization states of a single photon, or other schemes such as the
sidebands of phase-modulated light [11]. But security against eavesdropping
has lately been found to substantially increase by using all the three bases
of qubits, employing higher dimensional states, e.g. qudits [12],[13], or even
entanglement-based protocols [14]. Another, closely related, application of
MUBs is the so-called quantum state tomography, which is thought to be
the most efficient way to decipher an unknown quantum state [1].

Quantum state recovery and secure quantum key distribution can also be
furnished in terms of so-called positive operator valued measures (POVMs)
which are symmetric informationally complete (SIC-POVMs) [15]. These
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are defined as sets of d2 normalized vectors a and b such that |〈a|b〉| =
1/
√
d+ 1, where a 6= b, and they are connected with MUBs. Unlike the

latter ones, however, the SIC-POVMs can exist in all finite dimensions and
they have already been constructed for d = 6 [8]. The intricate link between
MUBs and SIC-POVMs has recently been examined by Wootters [9] and
acquired an intriguing geometrical footing in the light of the “SPR conjec-
ture” [16] stating that the question of the existence of a set of d+ 1 MUBs
in a d-dimensional Hilbert space if d differs from a power of a prime number
is equivalent to the problem of whether there exist projective planes whose
order d is not a power of a prime number. Also, Bengtsson and Ericsson [17]
provided a connection with sets of d2 facets of convex polytopes of power of
prime dimensions: the centers of the facets can form a regular simplex if and
only if there is an affine plane of order d that exists only if d is a power of
a prime. We also mention that interestingly, in the Lie algebra approach to
MUBs, it has been recently noticed [18] that a complete collection of MUBs
in Cd gives rise to a so-called orthogonal decomposition (OD) of sld(C) and
that there is a longstanding conjecture that ODs of sld(C) can only exist if
d is a prime power. Also, the structure of MUBs for systems of three and
four qubits have been recently studied in detail by Romero and collaborators
[19].

This survey paper is biased according to our research interests and is
organized as follows. In Sections 2 and 3 the construction of a maximal
set of MUBs in dimension d = pm, p being a prime, as a quantum Fourier
transform acting on a Galois field (p odd) and a Galois ring GR(4m) (p = 2)
is discussed. This puts in perspective the earlier formulas by [5] and [7],
respectively. The case of non-prime-power dimensions is briefly examined
in Section 4. Next, in Section 5, we focus on our recent conjecture on the
equivalence of two problems: the surmised nonexistence of projective planes
whose order is not a power of a prime and the suspected non existence of
a complete set of MUBs in Hilbert spaces of non-prime-power dimensions.
The geometry of qubits is discussed and the concept of a lifted Fano plane is
introduced. Finally, an intricate relationship between MUBs and maximal
entanglement is emphasized, which promises to shed fresh light on newly
emerging concepts such as the distillation of mixed states and bound entan-
glement [20]. We endeavored for the self-consistency of the paper. Yet, the
interested reader may find it helpful to consult some introductory texts on
quantum theory in a finite Hilbert space and its relation to Fourier trans-
forms and phase space methods, e.g., the reviews by A. Vourdas [21].
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2 MUB’S, QUANTUM FOURIER TRANSFORMS

AND GALOIS FIELDS

In order to see the close connection between MUBs and Fourier trans-
forms, we consider an orthogonal computational basis

B0 = (|0〉, |1〉, · · · , |n〉, · · · , |d− 1〉) (1)

with indices n in the ring Zd of integers modulo d. There is a dual basis
which is defined by the quantum Fourier transform

|θk〉 =
1√
d

d−1
∑

n=0

ωkn
d |n〉, (2)

where k ∈ Zd, ωd = exp(2iπ
d ) and i2 = −1.

In the context of quantum optics this Fourier transform relates Fock states
|k〉 of light to the so-called phase states |θk〉. The properties of the quantum
phase operator underlying this construction have extensively been studied
and found to be linked to prime number theory [22].

2.1 d = 2: The quantum gates approach

For d = 2, i.e. the case of qubits, one has ω = −1 and so

|θ0〉 =
1√
2
(|0〉 + |1〉); |θ1〉 =

1√
2
(|0〉 − |1〉). (3)

These two vectors can also be obtained by applying the Hadamard matrix

H = 1√
2

[

1 1
1 −1

]

to the basis (|0〉, |1〉). Note that the two orthogonal

bases B0 = (|0〉, |1〉) and B1 = (|θ0〉, |θ1〉) are mutually unbiased. The third
base B2 = (|ψ0〉, |ψ1〉) which is mutually unbiased to both B0 and B1 is

obtained from H by the pre-action of a π/2 rotation S =

[

1 0
0 i

]

, so that

HS = 1√
2

[

1 i
1 −i

]

. The three matrices (I,H,HS) thus generate the three

MUBs. These matrices are also important for two qubits gates in quantum
computation [12].

2.2 d = 2: The Pauli matrices approach

The above-outlined strategy for finding MUBs for qubits contrasts with
that used by the majority of authors. The eigenvectors of the Pauli spin
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matrices

σz =

[

1 0
0 −1

]

, σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, (4)

where σy = iσxσz, are precisely the sought bases B0, B1 and B2.
A natural generalization of Pauli operators σx and σz for an arbitrary di-
mension d is the Pauli group of shift and clock operators:

Xd|n〉 = |n+ 1〉, (5)

Zd|n〉 = ωn
d |n〉.

For a prime dimension d = p, it can be shown that the eigenvectors of
the unitary operators (Zp,Xp,XpZp, · · · ,XpZ

p−1
p ) generate the set of d +

1 MUBs [23]. A natural question here emerges whether this method can
straightforwardly be generalized to any dimension.

2.3 MUBs on Galois fields

Let us attempt to rewrite Eq.(2) in such a way that the exponent of ωd

now acts on the elements of a Galois field G = GF (pm), the finite field of
characteristic p and cardinality d = pm. Denoting “⊕” and “⊙” the two
usual operations in the field and replacing ωd by the root of unity ωp, we
get

|θk〉 =
1√
d

d−1
∑

n=0

ωk⊙n
p |n〉. (6)

Next, we employ the Euclidean division theorem for fields [24], which says
that given any two polynomials k and n in G there exists a uniquely deter-
mined pair a and b in G such that k = a⊙ n⊕ b, deg b < deg a. This allows
for the exponent in Eq.(6), E, to be written as E = (a⊙ n⊕ b) ⊙ n. In the
case of prime dimension d = p, E is an integer. Otherwise E is a polynomial
and Eq.(6) generalizes to

|θa
b 〉 =

1√
d

d−1
∑

n=0

ωtr[(a⊙n⊕b)⊙n]
p |n〉, (7)

where “tr” stands for the trace of GF (pm) down to GF (p),

tr(E) = E ⊕Ep ⊕ · · · ⊕ Epm−1
, E ∈ GF (pm). (8)

In a finite field of odd characteristic p, Eq.(5) defines the set of d bases,
with the index a for the base and the index b for the vector in the base,
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mutually unbiased to each other and to the computational base B0 as well.
In a slightly different form, this equation was first derived by Wootters
and Fields [5]. Its nice short elucidation, based on Weil sums, is due to
Klappenecker and Rötteler [7]. Another, a more tricky derivation still in
the spirit of Fourier transforms and claimed to hold also for the case of
characteristic 2, was found by Durt [25]. An interesting approach based on
the Weyl operators in the L2-space over Galois fields is also worth mentioning
[26].

As already pointed out by Wooters and Fields [5], the reason why (7)
defines the complete set of MUBs relies on the field theoretical formula

|∑d−1
n=0 ω

tr[(a⊙n⊕b)⊙n]
p |n〉| = p1/2, with a 6= 0 and p being an odd prime. This

method, however, fails for characteristic two where |
∑d−1

n=0 ω
tr[(a⊙n⊕b)⊙n]
2 |n〉| =

0 for any a, b. As shown in Sect. 3 below, here one has to use Galois rings
instead of Galois fields to find a complete set of MUBs.

A closer inspection of (7) reveals an intricate relation between MUBs
and quantum phase operators. It is known [22] that the Fourier basis |θk〉
can be derived in terms of the eigenvectors of a quantum phase operator
with eigenvalues θk and given by Θd =

∑d−1
k=0 θk|θk〉〈θk|. Similarly, using

well known properties of the field trace, one can show that each base of
index a can be associated with a quantum phase operator

Θa
d =

d−1
∑

b=0

θa
b |θa

b 〉〈θa
b |, (9)

with eigenvectors |θa
b 〉 and eigenvalues θa

b ; the latter may thus be called an
“MUB operator”.

3 MUBs FOR EVEN CHARACTERISTIC FROM

GALOIS RINGS

Our next goal is to find a Fourier transform formulation of MUBs in
characteristic 2. Eq.(6), as it stands, is in principle valid for any power
of a prime, d = pm, thus also for 2m−dits, and one may, therefore, be
tempted to connect the Galois field algebra and generalized Pauli operators
(3) by constructing discrete vector spaces over the Galois field [27]. For
the one qubit case we already know that the eigenvectors of Pauli matrices
σz, σx and σxσz define the three MUBs. Passing to the quartit (i.e., 4-
dit) case, one finds that the operators of the following tensorial products
σz ⊗ σx, σz ⊗ σxσz and σxσz ⊗ σz are associated to translations, i.e. to a

6



single line in the corresponding vector space, and they define a unique basis
represented by their simultaneous eigenvectors. Since there are 4+1 lines in
this discrete vector space, there are also 4 + 1 MUBs. Other geometrically
inspired derivations based on the tensorial decomposition of operators in the
Pauli group can be found in the literature [23][28][29].

Now, let us try adjusting Eq.(6) for the case of characteristic two. Instead
of the Euclidean division in the field GF (2m), it is necessary to consider
a decomposition in the Galois ring GR(4m) (defined below) so that the
relevant root of unity in the Fourier formula now reads ω4 = exp(2iπ/4) = i.
For qubits GR(4) = Z4, and since any number k in Z4 can be written as
k = a⊕ 2 ⊙ b, Eq. (6) turns into

|θa
b 〉 =

1√
2

1
∑

n=0

i(a⊕2⊙b)⊙n|n〉, (10)

where ⊕ and ⊙ now act in Z4. We note that the bases are identical to the
ones obtained earlier from Eq.(2), i.e. B1 = (|θ0

0〉, |θ0
1〉) and B2 = (|θ1

0〉, |θ1
1〉).

To generalize further this formula one needs to introduce some abstract
algebra. First one recalls that the Galois field GF (pm) is the field of poly-
nomials defined as the quotient Zp(x)/q(x) of the ring of polynomials Zp(x)
by a primitive polynomial of order m over Zp = GF (p). By definition,
this primitive element α = q(x) has the property to be irreducible over
the base field GF (p), i.e., it cannot be factored into products of lesser-
degree polynomials; it is also primitive over GF (p) of order p − 1 in the
sense that it generates any non zero element of GF (p) by a power sequence
(α1, α2, · · · , αp−1 = 1) and in addition all of its roots are in the extension
field GF (pm). There is at least one primitive polynomial for any extension
field GF (pm). For p = 2 and m = 2, 3 and 4 they are, for example, of the
form q(x) = x2 + x+ 1, x3 + x+ 1 and x4 + x+ 1, respectively.

A Galois ring GR(4m) of order m is a ring of polynomials which is an
extension of Z4 of degree m containing an r-th root of unity [30],[31]. Let
h2(x) ∈ Z2(x) be a primitive irreducible polynomial of degree m. There
is a unique monic polynomial h(x) ∈ Z4(x) of degree m such that h(x) =
h2(x)(mod 2) and h(x)(mod 4) divides xr − 1, where r = 2m − 1. The
polynomial h(x) is the basic primitive polynomial and defines the Galois ring
GR(4m) = Z4/h(x) of cardinality 4m. This ring can be found as follows.
Let h2(x) = e(x) − d(x), where e(x) contains only even powers and d(x)
only odd powers; then h(x2) = ±(e2(x) − d2(x)). For m = 2, 3 and 4 one
gets h(x) = x2 + x+ 1, x3 + 2x2 + x− 1 and x4 + 2x2 − x+ 1, respectively.

Any non zero element of GF (pm) can be expressed in terms of a single
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primitive element. This is no longer true in GR(4m), which contains zero
divisors. But in the latter case there exists a nonzero element ξ of order
2m − 1 which is a root of the basic primitive polynomial h(x). Any element
β ∈ GR(4m) can be uniquely determined in the form β = a⊕ 2 ⊙ b, where
a and b belong to the so-called Teichmüller set Tm = (0, 1, ξ, · · · , ξ2m−2).
Moreover, one finds that a = β2m

. We can also define the trace to the base
ring Z4 by the map

tr(β) =

m−1
∑

k=0

σk(β), (11)

where the summation runs over GR(4m) and the Frobenius automorphism
σ reads

σ(a⊕ 2 ⊙ b) = a2 ⊕ 2 ⊙ b2, (12)

with a2 ≡ a⊙ a. Using the 2-adic decomposition of k in the exponent of (6)
and the above-given trace map, we finally get

|θa
b 〉 =

1√
2m

2m−1
∑

n=0

itr[(a⊕2⊙b)⊙n]|n〉; (13)

the last expression gives a set of d = 2m bases with index a for the base and
index b for the vectors in the base, mutually unbiased to each other and to
the computational base B0 [7].

Let us apply this formula to the case of quartits. InGR(42) = Z4[x]/(x
2+

x+1) the Teichmüller set reads T2 = (0, 1, x, 3+3x); the 16 elements a⊕2⊙b
with a and b in T2 are shown in the following matrix









0 2 2x 2 + 2x
1 3 1 + 2x 3 + 2x
x 2 + x 3x 2 + 3x

3 + 3x 1 + 3x 3 + x 1 + x









. (14)

Extracting the Teichmüller decomposition (a⊕ 2 ⊙ b) ⊙ n = a′ ⊕ 2 ⊙ b′ and
calculating the exponent tr(a′ ⊕ 2⊙ b′) = a′ ⊕ 2⊙ b′ ⊕ a′2 ⊕ 2⊙ b′2 one gets
the four MUBs

B1 = (1/2){(1, 1, 1, 1), (1, 1,−1,−1), (1,−1,−1, 1), (1,−1, 1,−1)}
B2 = (1/2){(1,−1,−i,−i), (1,−1, i, i), (1, 1, i,−i), (1, 1,−i, i)}
B3 = (1/2){(1,−i,−i,−1), (1,−i, i, 1), (1, i, i,−1), (1, i,−i, 1)}
B4 = (1/2){(1,−i,−1,−i), (1,−i, 1, i), (1, i, 1,−i), (1, i,−1, i)}. (15)

8



The case of 8-dits can be examined in a similar fashion, with the ring
GR(43) = Z4[x]/(x

3 + 2x2 + x − 1) and Teichmüller set featuring the fol-
lowing eight elements: T2 = {0, 1, x, x2, 1 + 3x+ 2x2, 2 + 3x+ 3x2, 3 + 3x+
x2, 1 + 2x+ x2}.

4 MUB’S FOR NON-PRIME-POWER DIMEN-

SIONS

For d = 6, the lowest non-prime-power (n-p-p) case, one constructs a set
of three MUBs as follows. One takes the three MUBs in d = 2, viz.

B
(1)
0 = (|0〉, |1〉), B(1)

1 = (|θ0〉, |θ1〉), B(1)
2 = (|ψ0〉, |ψ1〉), (16)

or, in the matrix form, B
(1)
0 =I2, B

(1)
1 =H and B

(1)
2 =HS, and the first three

MUBs in d = 3, viz.

B
(2)
0 = (|0〉, |1〉, |2〉), B(2)

1 = (|u0〉, |u1〉, |u2〉), B(2)
2 = (|v0〉, |v1〉, |v2〉), (17)

or, in a more convenient form

B
(2)
0 = I3, B

(2)
1 =

1√
3





1 1 1
1 ω3 ω̄3

1 ω̄3 ω3



 , B
(2)
2 =

1√
3





1 ω3 ω3

1 ω̄3 1
1 1 ω̄3



 (17a)

and extracts the expressions for three MUBs in d = 6 from the rows of the

following tensorial product matrices C0 = B
(1)
0 ⊗B(2)

0 = I6, C1 = B
(1)
1 ⊗B(2)

1

and C2 = B
(1)
2 ⊗ B

(2)
2 . This construction can easily be generalized to any

n-p-p dimension [7],[32]. One considers the prime number decomposition
d =

∏r
i=1 p

ei

i , takes its smallest factor m̃ = mini(p
ei

i ), and gets m̃+1 MUBs

from the tensorial product B(k) = ⊗r
i=1B

(k)
i , (k = 0, .., m̃).

At this point, it is instructive to enlighten the above-described construc-
tion of MUBs by confining ourselves to the Galois ring in d = 6. Let us
take the latter as the quotient GR(62) = Z6[x]/(x

2 +3x+1) of polynomials
over Z6 by a polynomial irreducible over both Z2 and Z3. GR(62) has 36
elements. The notion of Teichmüller set can be generalized to the so-called
Sylow decomposition [6]. Any element β ∈ GR(6) can be uniquely deter-
mined in the form β = a ⊕ b, where a and b are in the Sylow subgroups
Sa and Sb. These can be defined as Sa = {x ∈ GR(6) : 2x = 0} and
Sb = {x ∈ GR(6) : 3x = 0}, i.e.

Sa = {0, 3, 3x, 3 + 3x},
Sb = {0, 2, 4, 2x, 4x, 2 + 2x, 2 + 4x, 4 + 2x, 4 + 4x}. (18)
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Since the quotient polynomial is irreducible, one observes that Sa and Sb

themselves are finite fields, being isomorphic to GF (4) and GF (9), respec-
tively. One can therefore express the ring in dimension 6 as the direct
product GF (4) ⊕ GF (9) = GR(6). Can this property be useful to con-
structs MUBs themselves, or it merely represents a constraint on the max-
imum number of MUBs? One construction of MUBs for d=6 was based
on the tensorial product of MUBs in dimension 2 and 3, respectively. But
the three MUBs in dimension two do not follow from the four elements of
GF (4), but from the four elements of GR(41) = Z4. On the other hand, the
four MUBs in d=3 follow from the three elements of GF (3) = Z3. So the
decomposition of GR(6) as a product of two fields appears to be irrelevant
to the topic of MUBs. Moreover, it was shown that complete sets of MUBs
in n-p-p dimensions cannot be constructed using a majority of generaliza-
tions of known formulas for finite rings [6]. This, however, should not deter
us from looking at other possible constructions. For example, using the
properties of sets of mutually orthogonal Latin squares, it has recently been
shown that in a particular square dimension 262 it is, in principle, possible
to construct at least 6 MUBs, while the construction based on the prime
number decomposition determines only mini(p

ei

i ) + 1 = 22 + 1 = 5 of them
[33].

5 MUB’S AND FINITE PROJECTIVE PLANES

An intriguing similarity between mutually unbiased measurements and
finite projective geometry has recently been noticed [16]. Let us find the
minimum number of different measurements we need to determine uniquely
the state of an ensemble of identical d-state particles. The density matrix
of such en ensemble, being Hermitean and of unit trace, is specified by
(2d2/2)− 1 = d2 − 1 real parameters. When one performs a non-degenerate
orthogonal measurement on each of many copies of such a system one even-
tually obtains d − 1 real numbers (the probabilities of all but one of the d
possible outcomes). The minimum number of different measurements needed
to determine the state uniquely is thus (d2 − 1)/(d − 1) = d+ 1 [5],[27].

It is striking that the identical expression can be found within the con-
text of finite projective geometry. A finite projective plane is an incidence
structure consisting of points and lines such that any two points lie on just
one line, any two lines pass through just one point, and there exist four
points, no three of them on a line [34]. From these properties it readily
follows that for any finite projective plane there exists an integer d with
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the properties that any line contains exactly d + 1 points, any point is the
intersection of exactly d+ 1 lines, and the number of points is the same as
the number of lines, namely d2 + d + 1. This integer d is called the order
of the projective plane. The most striking issue here is that the order of
known finite projective planes is a power of prime. The question of which
other integers occur as orders of finite projective planes remains one of the
most challenging problems of contemporary mathematics. The only “no-go”
theorem known so far in this respect is the Bruck-Ryser theorem [35] saying
that there is no projective plane of order d if d− 1 or d− 2 is divisible by 4
and d is not the sum of two squares. Out of the first few non-prime-power
numbers, this theorem rules out finite projective planes of order 6, 14, 21,
22, 30 and 33. Moreover, using massive computer calculations, it was proved
that there is no projective plane of order ten. It is surmised that the order
of any projective plane is a power of a prime.

It has been conjectured by three of us [16] that the question of the
existence of a set of d+1 MUBs in a d-dimensional Hilbert space if d differs
from a power of a prime number is identical with the problem of whether
there exist projective planes whose order d is not a power of a prime number.
Furthermore, for power of a prime dimension, the complete sets of MUBs
can be put in correspondence with d + 1-arcs, which are ‘curves’ known as
ovals in (Desarguesian) projective plane of order d [36]. For d = 2n and
n ≥ 3 there are two types of ovals, viz. conics and non-conics, implying the
existence of two types of MUBs for such dimensions. In addition, in the
same case of a power of a prime dimension d = pr, the pr vectors of a base
correspond to the total number of points in a so-called neighbour class along
a (proper) conic of a projective Hjelmslev plane defined over a Galois ring
of characteristic p2 and rank r, whereas the d+ 1 MUBs correspond exactly
to the total number of pairwise disjoint neighbour classes on the conic [37].

5.1 GF (8) and the Fano plane

The smallest projective plane, also called the Fano plane, is obviously
the d = 2 one; it contains 7 points and 7 lines, any line contains 3 points
and each point is on 3 lines. It comprises a 3-dimensional vector space over
the field GF (2), each point being a triple (g1, g2, g3), excluding the (0,0,0)
one, where gi ∈ GF (2) = {0, 1} [34]. The points of this plane can also be
represented in terms of the non-zero elements of the Galois fieldG = GF (23).

To see this, we recall that this field is isomorphic to Z2(x)/(α) with the
polynomial α = p(x) = x3+x+1 irreducible in GF (2). It is well-known that
there are three useful representations of the elements of GF (8) as shown in
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Table I [34], [38],[39].

Table 1: Representations of the elements of the Galois field GF (8)

as powers of α as polynomials as 3-tuples in Z3
2

0 0 (0,0,0)

1 1 (0,0,1)

α α (0,1,0)

α2 α2 (1,0,0)

α3 1 + α (0,1,1)

α4 α+ α2 (1,1,0)

α5 1+α+α2 (1,1,1)

α6 1 + α2 (1,0,1)

The first representation emphasizes the fact that G∗ = G − {0} is a
multiplicative cyclic group of order 7, for α7 = 1. The second representation
is obtained from the first by calculating modulo the primitive polynomial
α. Finally, the 3-tuple representation is obtained from the coefficients of the
three powers x0 = 1, x1 = x and x2. Taking these 3-tuples as the points of
a 3-dimensional vector space, we recover the Fano plane − see Fig. 1.

5.2 The lifted Fano plane in GR(43)

We already know from Sect. 3 that the relevant object for 2m-dits is not
the Galois field GF (2m), but rather the Galois ring GR(4m). It is therefore
important to have a look at the geometry in the space A = GR(43). For a
ring, the concept of a vector space must be replaced by that of a module. The
largest cycle in A is the set T ∗

3 = T3−{0} (see Sect. 3), and each element of
T ∗

3 can be represented in the same way as in the case of a Galois field. This
is summarized in Table II. Any polynomial h(x) in T ∗

3 (column 2) is uniquely
projected as a polynomial h2(x) = h(x) (mod 2) in GF (8), which results in
the 3-tuple representation in Z3

2 (column 4). Vice versa, any polynomial in
GF (8) has a unique lift in T ∗

3 . Since the geometrical structure we are looking
at is combinatorial and doesn’t depend on particular coordinates, it follows
that the lifted Fano plane in T ∗

3 is still the Fano plane up to isomorphism.
So the Fano geometry is inherent in the geometry of qubits, but we needed
a special coordinatization in order to be able to see that.
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Figure 1: The Fano plane.

6 MUB’S OF MAXIMALLY ENTANGLED STATES

The above-discussed methods of constructing MUBs can straightfor-
wardly be used for recognizing orthogonal bases of maximally entangled
states, of which some can be mutually unbiased. Following the methodol-
ogy outlined in Sections 2 and 3, let us consider a set of generalized Bell
states defined as a two particle quantum Fourier transform [13],[40]

|Bh,k〉 =
1√
d

d−1
∑

n=0

ωkn
d |n, n+ h〉, (19)

where |n, n + h〉 denotes the two-particle state |n〉, |n + h〉 and the oper-
ation n + h is performed modulo d. These states are both orthonormal,
〈Bh,k|Bh′,k′〉 = δhh′δkk′ , and maximally entangled, trace2|Bh,k〉〈Bh,k| = 1

dId,
where trace2 means the partial trace over the second qudit [12]. If one re-
stricts to the case of 2-qubits, one recovers the well-known representation of
Bell states (|B0,0〉, |B0,1〉) = 1√

2
(|00〉 + |11〉, |00〉 − |11〉), (|B1,0〉, |B1,1〉)=

1√
2
(|01〉 + |10〉, |01〉 − |10〉), where a more compact notation |00〉 = |0, 0〉,

|01〉 = |0, 1〉,. . . , is employed. Let us first focus on 2-qubits starting from
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Table 2: Representations of the elements of the cyclic group in the Galois
ring GR(43)

as powers of ξ as polynomials as 3-tuples in Z3
4 as 3-tuples in Z3

2

0 0 (0,0,0) (0,0,0)

1 1 (0,0,1) (0,0,1)

ξ ξ (0,1,0) (0,1,0)

ξ2 ξ2 (1,0,0) (1,0,0)

ξ3 1 + 3ξ + 2ξ2 (2,3,1) (0,1,1)

ξ4 2 + 3ξ + 3ξ2 (3,3,2) (1,1,0)

ξ5 3 + 3ξ+ξ2 (1,3,3) (1,1,1)

ξ6 1 + 2ξ + ξ2 (1,2,1) (1,0,1)

Eq.(10). Paralleling of what we did in Sect. 3, one first identifies kn in (19)
as the multiplication k ⊙ n of polynomials in GR(4) and then makes use
of Teichmüller decomposition k = a ⊕ 2 ⊙ b. This leads to a set of 4 bases
(h, a = 0, 1) of two vectors (b = 0, 1), namely

|Ba
h,b〉 =

1√
2

1
∑

n=0

i(a⊕2⊙b)⊙n|n, n⊕ h〉. (20)

Casting the last equation into its matrix form (safe for the proportionality
factor),

[

(|00〉) + |11〉, |00〉 − |11〉); (|01〉 + |10〉, |01〉 − |10〉)
(|00〉 + i|11〉, |00〉 − i|11〉); (|01〉 + i|10〉, |01〉) − i|10〉)

]

, (21)

one finds that two bases in one column are mutually unbiased, while vectors
in two bases on the same line are orthogonal to each other.

Eq.(20) can easily be extended to maximally entangled two-particle sets
of 2m-dits by applying, as in Eq.(13), the Frobenius map (11) to the base
field Z4

|Ba
h,b〉 =

1√
2m

2m−1
∑

n=0

itr[(a⊕2⊙b)⊙n]|n, n⊕ h〉. (22)

For 2-particle sets of quartits, using Eqs.(15) and (22), one thus gets 4 sets
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(|Ba
h,b〉, h = 0, ..., 3) of 4 MUBs (a = 0, ..., 3),

{(|00〉 + |11〉 + |22〉 + |33〉, |00〉 + |11〉 − |22〉 − |33〉,
|00〉 − |11〉 − |22〉 + |33〉, |00〉 − |11〉 + |22〉 − |33〉);

(|00〉 − |11〉 − i|22〉 − i|33〉, |00〉 − |11〉 + i|22〉 + i|33〉,
|00〉 + |11〉 + i|22〉 − i|33〉, |00〉 + |11〉 − i|22〉 + i|33〉);

· · ·}

{(|01〉 + |12〉 + |23〉 + |30〉, |01〉 + |12〉 − |23〉 − |30〉,
|01〉 − |12〉 − |23〉 + |30〉, |01〉 − |12〉 + |23〉 − |30〉);

(|01〉 − |12〉 − i|23〉 − i|30〉, |01〉 − |12〉 + i|23〉 + i|30〉,
|01〉 + |12〉 + i|23〉 − i|30〉, |01〉 + |12〉 − i|23〉 + i|30〉);

· · ·}

{(|02〉 + |13〉 + |20〉 + |31〉, |02〉 + |13〉 − |20〉 − |31〉,
|02〉 − |13〉 − |20〉 + |31〉, |02〉 − |13〉 + |20〉 − |31〉); · · ·

· · ·}

{(|03〉 + |10〉 + |21〉 + |32〉, |03〉 + |10〉 − |21〉 − |32〉,
|03〉 − |10〉 − |21〉 + |32〉, |03〉 − |10〉 + |21〉 − |32〉); · · ·

· · · }, (23)

where, for the sake of brevity, we omitted the normalization factor (1/2).
Within each set, the four bases are mutually unbiased, as in (15), while the
vectors of the bases from different sets are orthogonal.

Turning now to odd characteristic, i.e. to d = pm with p an odd prime,
we can similarly extend Wootters formula (7) to the generalized Bell states

|Ba
h,b〉 =

1√
d

d−1
∑

n=0

ω
tr[(a⊙n⊕b)⊙n]
d |n, n⊕ h〉, (24)

where the trace is defined by Eq.(8). A list of the generalized Bell states
of qutrits for the base a = 0 can be found in [41], the work that relies on
a coherent state formulation of entanglement. In general, for d a power of
a prime, starting from (19) or (24) one obtains d2 bases of d maximally
entangled states. Each set of the d bases (with h fixed) has the property of
mutual unbiasedness.
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Eq.(19) can be used, without any substantial restriction, to find d bases
(h = 0, .., d − 1) of maximally entangled states in any composite dimen-
sion d =

∏r
i=1 p

ei

i . Or one can also follow the strategy of Sect. 4 to get
m̃ = mini(p

ei

i ) sets of MUBs of maximally entangled states. In d = 6, for
example, one expects that two such sets of d bases can be constructed. Us-
ing the tensorial products in Sect. 4, one indeed finds the two 2 × 6 sets
(with the 1/

√
6 factor omitted)

{(|00〉 + |11〉 + |22〉 + |33〉 + |44〉 + |55〉, |00〉 + ω3|11〉 + ω̄3|22〉 + |33〉 + ω3|44〉 + ω̄3|55〉,

|00〉 + ω̄3|11〉 + ω3|22〉 + |33〉 + ω̄3|44〉 + ω3|55〉, |00〉 + |11〉 + |22〉 − |33〉 − |44〉 − |55〉,

|00〉 + ω3|11〉 + ω̄3|22〉 − |33〉 − ω3|44〉 − ω̄3|55〉, |00〉 + ω̄3|11〉 + ω3|22〉 − |33〉 − ω̄3|44〉 − ω3|55〉);

(|00〉 + ω3|11〉 + ω3|22〉 + i|33〉 + iω3|44〉 + iω3|55〉, |00〉 + ω̄3|11〉 + |22〉 + i|33〉 + iω̄3|44〉 + i|55〉,

|00〉 + |11〉 + ω̄3|22〉 + i|33〉 + i|44〉 + iω̄3|55〉, |00〉 + ω3|11〉 + ω3|22〉 − i|33〉 − iω3|44〉 − iω3|55〉,

|00〉 + ω̄3|11〉 + |22〉 − i|33〉 − iω̄3|44〉 − i|55〉, |00〉 + |11〉 + ω̄3|22〉 − i|33〉 − i|44〉 − iω̄3|55〉); . . .}

.

.

.

{(|01〉 + |12〉 + |23〉 + |34〉 + |45〉 + |50〉, |01〉 + ω3|12〉 + ω̄3|23〉 + |34〉 + ω3|45〉 + ω̄3|50〉, · · · }. (25)

Multipartite entanglement is a key ingredient of many quantum proto-
cols, still needing much work to be properly understood. Sets of orthogonal
product states that are unextendible, meaning that no further product states
can be found orthogonal to all the existing ones, have recently attracted a
lot of attention. These unextendible product bases [42], and their comple-
ment [43], certainly deserve reconsideration in terms of the above-outlined
theory, which is based on abstract algebra and finite geometry.

The Fourier transform approach implies that mutual unbiasedness and
maximal entanglement are complementary aspects in orthogonal quantum
measurements. In such measurements, the quantum states are encoded in a
three-dimensional lattice of indices h (entanglement), a (unbiasedness) and
b (dimensionality of Hilbert space). If d is a power of a prime, the lattice is
a cube since in this case h, a and b reach their limiting value d. If one for-
gets about entanglement (h = 0), the finite geometry which seems to be of
most relevance is that of a finite projective plane. On the other hand, when
unbiasedness is not taken into account, as well as for multipartite informa-
tion tasks when d is not (a power of) a prime, other concepts have been
introduced, such as Bell inequalities [44], coherent states [41], entanglement
swapping [45], generalized Hopf fibrations [46], topological entanglement [47]
and bound entanglement [42], to mention a few.
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