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École Polytechnique, 91128 Palaiseau, France.

Abstract

Given a control region Ω on a compact Riemannian manifold M , we consider the
heat equation with a source term g localized in Ω. It is known that any initial data
in L2(M) can be steered to 0 in an arbitrarily small time T by applying a suitable
control g in L2([0, T ]×Ω), and, as T tends to 0, the norm of g grows like exp(C/T )
times the norm of the data. We investigate how C depends on the geometry of Ω.
We prove C ≥ d2/4 where d is the largest distance of a point in M from Ω. When M
is a segment of length L controlled at one end, we prove C ≤ α∗L

2 for some α∗ < 2.
Moreover, this bound implies C ≤ α∗L

2
Ω where LΩ is the length of the longest

generalized geodesic in M which does not intersect Ω. The control transmutation
method used in proving this last result is of a broader interest.

Key words: Heat equation, control cost, null-controllability, observabillity, small
time asymptotics, multipliers, entire functions, transmutation.

1 The problem

Let (M, g) be a smooth connected compact n-dimensional Riemannian man-
ifold with metric g and boundary ∂M . When ∂M 6= ∅, M denotes the in-
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terior and M = M ∪ ∂M . Let dist : M
2 → R+ denote the distance func-

tion. Let ∆ denote the (negative) Dirichlet Laplacian on L2(M) with domain
D(∆) = H1

0 (M) ∩H2(M).

Consider a positive control time T , and an open control region Ω. Let 1]0,T [×Ω

denote the characteristic function of the space-time control region ]0, T [×Ω.
The heat equation on M is said to be null-controllable (or exactly controllable
to zero) in time T by interior controls on Ω if for all u0 ∈ L2(M) there is a
control function g ∈ L2(R×M) such that the solution u ∈ C0([0,∞), L2(M))
of the mixed Dirichlet-Cauchy problem:

∂tu−∆u = 1
]0,T [×Ω

g in ]0, T [×M, u = 0 on ]0, T [×∂M, (1)

with Cauchy data u = u0 at t = 0, satisfies u = 0 at t = T . For a survey on
this problem prior to 1978 we refer to [Rus78]. For a recent update, we refer to
[Zua01]. Lebeau and Robbiano have proved (in [LR95] using local Carleman
estimates) that there is a continuous linear operator S : L2(M) → C∞

0 (R×M)
such that g = Su0 yields the null-controllability of the heat equation on M in
time T by interior controls on Ω.

The most striking feature of this result is that we may control the heat in
arbitrarily small time whatever geometry the control region has. In this paper
we address the following question: How does the geometry of the control region
influence the cost of controlling the heat to zero in small time ?

Now, we shall formulate this question more precisely and give references.

Definition 1.1. For all control time T and all control region Ω, the null-
controllability cost for the heat equation on M is the best constant, denoted
CT,Ω, in the estimate:

‖g‖L2(R×M) ≤ CT,Ω‖u0‖L2(M)

for all initial data u0 and control g solving the null-controllability problem
described above.

By duality (cf. [DR77]), CT,Ω is also the best constant in the observation
inequality for the homogeneous heat semigroup t 7→ et∆:

∀u0 ∈ L2(M), ‖eT∆u0‖L2(M) ≤ CT,Ω‖et∆u0‖L2((0,T )×Ω) .

Lebeau and Robbiano’s result implies the finiteness of the null-controllability
cost for the heat equation on M for any control time and any control region.
Èmanuilov extended this result to more general parabolic operators in [Èma95]
using global Carleman estimates with singular weights. When (M, g) is an open
set in Euclidean space, this method was used by Fernández-Cara and Zuazua
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in [FCZ00] to obtain the optimal time dependence of the null-controllability
cost for small time, i.e.:

0 < sup
Bρ⊂M\Ω

ρ2/4 ≤ lim inf
T→0

T ln CT,Ω ≤ lim sup
T→0

T ln CT,Ω < +∞ (2)

where the supremum is taken over balls Bρ of radius ρ. The lower bound
is stated in section 4.1 of [Zua01] and it is based on the construction of a
“very singular solution of the heat equation in (0, +∞) × Rn” used in the
proof of Theorem 6.2 in [FCZ00]. Note that the method used in theorem 1
of [LR95] seems to fall short of the optimal time dependence. Actually, using
the improved version of proposition 1 in [LR95] presented as proposition 2 in
[LZ98], we have only been able to prove that lim supT→0 T γ ln CT,Ω is finite for
all γ > 1.

Indeed Seidman had already asked how violent fast controls are, and his first
answer concerned heat null-controllability from a boundary region Γ ⊂ ∂M .
In [Sei84], under the condition that the wave equation on M is exactly con-
trollable by controls in Γ in time L, he computes an explicit positive value
β such that lim supT→0 T ln CT,Γ ≤ βL2 (we give more explanations on this
geometric upper bound in section 2 after theorem 2.3). The positivity of
lim infT→0 T ln CT,Γ when M is an interval was subsequently proved by Güichal
in [Güi85], ensuring the optimality of Seidman’s result with respect to the time
dependence. Later, Seidman also addressed finite dimensional linear systems
as well as the Schrödinger and plate equations (cf. the companion paper [Mil04]
for more details and references).

2 The results

2.1 Lower bound

Our first result, proved in section 3, generalizes and improves on the geometric
lower bound of Fernández-Cara and Zuazua:

Theorem 2.1. The null-controllability cost of the heat equation for small time
(cf. definition 1.1) satisfies the following geometric lower bound:

lim inf
T→0

T ln CT,Ω ≥ sup
y∈M

dist(y, Ω)2/4 (3)

As put in [Zua01], such a lower bound follows from the construction of a
“very singular solution of the heat equation”. Our construction underscores
that only a large but finite number of modes is needed. For a short control
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time T > 0, we consider a Dirac mass as far from Ω as possible, we smooth
it out by applying the homogeneous heat semigroup for a very short time
(εT with small ε) and truncating very large frequencies (larger than (εT )−1),
and finally we take it as initial data in (1). The proof relies on Varadhan’s
formula for the heat kernel in small time (cf. [Var67]), which requires very low
smoothness assumptions as proved in [Nor97].

We believe that there is no solution of the heat equation which is more singular
than the heat kernel and therefore conjecture that this lower bound is also an
upper bound, i.e. lim

T→0
T ln CT,Ω = sup

y∈M
dist(y, Ω)2/4.

2.2 The segment controlled at one end

Our second result, proved in section 4, concerns the most simple heat null-
controllability problem: the heat equation on a segment controlled at one end
through a Dirichlet condition. It is an upper bound of the same type as the
lower bound in theorem 2.1, except that the quite natural rate 1/4 is replaced
by the technical rate (resulting from the complex multiplier lemma 4.4):

α∗ = 2
(

36

37

)2

< 2 . (4)

Theorem 2.2. For any α > α∗ defined by (4), there exists C > 0 such that,
for B = 1 or B = ∂s, for all L > 0, T ∈ ]0, inf(π, L)2] and u0 ∈ L2(0, L),
there is a g ∈ L2(0, T ) such that the solution u ∈ C0([0,∞), L2(0, L)) of the
following heat equation on [0, L] controlled by g from one end:

∂tu− ∂2
su = 0 in ]0, T [×]0, L[ , (Bu)es=0 = 0 , ues=L = g , uet=0 = u0 ,

satisfies u = 0 at t = T and ‖g‖L2(0,T ) ≤ CeαL2/T‖u0‖L2(0,L) .

Theorem 3.1 in [Sei84] yields this theorem for α∗ = 4β∗ with β∗ ≈ 42.86.
This result of Seidman can be improved to α∗ = 8β∗ with β∗ ≈ 4.17 using
his theorem 1 in [Sei86]. The value α∗ defined by (4) in theorem 2.2 is the
best we obtained yet following the well trodden path of the harmonic analysis
of this problem (cf. [Rus78] and [SAI00] for seminal and recent references).
As explained at the end of the previous subsection, we conjecture that α∗ =
1/4 is the optimal rate. The proof of theorem 2.1 also applies here, so that
theorem 2.2 does not hold with α∗ < 1/4. This theorem is valid for more
general linear parabolic equations and boundary conditions as formulated in
theorem 4.1.
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2.3 Upper bound under the geodesics condition

Our third result gives a good reason to strive for the best rate α∗ in theo-
rem 2.2. In section 5, we prove that the upper bound for the null-controllability
cost of the heat equation on a segment controlled at one end — the particular
case in which the computation are the most explicit — is also an upper bound
for the multidimensional case of equation (1) under the following geodesics
condition on the control region: every generalized geodesic in M intersects Ω.

In this context, the generalized geodesics are continuous trajectories t 7→ x(t)
in M which follow geodesic curves at unit speed in M (so that on these
intervals t 7→ ẋ(t) is continuous); if they hit ∂M transversely at time t0, then
they reflect as light rays or billiard balls (and t 7→ ẋ(t) is discontinuous at
t0); if they hit ∂M tangentially then either there exists a geodesic in M which
continues t 7→ (x(t), ẋ(t)) continuously and they branch onto it, or there is no
such geodesic curve in M and then they glide at unit speed along the geodesic
of ∂M which continues t 7→ (x(t), ẋ(t)) continuously until they may branch
onto a geodesic in M . For this result and whenever generalized geodesics are
mentionned, we make the additional assumptions that they can be uniquely
continued at the boundary ∂M (as in [BLR92], to ensure this, we may assume
either that ∂M has no contacts of infinite order with its tangents, or that g
and ∂M are real analytic), and that Ω is open.

Theorem 2.3. Let LΩ be the length of the longest generalized geodesic in M
which does not intersect Ω. If theorem 2.2 holds for some rate α∗ then the
null-controllability cost of the heat equation for small time (cf. definition 1.1)
satisfies the following geometric upper bound:

lim sup
T→0

T ln CT,Ω ≤ α∗L
2
Ω (5)

When comparing this result to the lower bound in theorem 2.1, one should
bear in mind that LΩ is always greater than 2 supy∈M dist(y, Ω) (because the
length of a generalized geodesic through y which does not intersect Ω is always
greater than 2 dist(y, Ω)) and can be infinitely so. For instance, on the sphere
M = Sn, if Ω is the complementary set of a tube of radius ε around the
equator, then supy∈M dist(y, Ω) = ε and LΩ = ∞. If Ω is increased by a tube
slice of small thickness δ, then the first length is unchanged while the second
length becomes greater than the length of the equator of M minus δ, so that
LΩ is finite yet much greater than supy∈M dist(y, Ω) as ε → 0.

Moreover, as recalled in section 1, this geodesics condition is by no means
necessary for the null-controllability of the heat equation. It is more relevant
to the wave equation on M , for which it is a sharp sufficient condition for
exact controllability in time T by interior controls on Ω as proved in [BLR92]
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(cf. theorem 5.3 for the precise statement). It was later proved in [BG97] that
this condition is also necessary when the characteristic function of ]0, T [×Ω is
replaced by a smooth function θ such that {θ(t, x) 6= 0} =]0, T [×Ω.

In fact we use the exact controllability of the wave equation to prove our result
on the null-controllability of the heat equation. This strategy was already
applied by Russell in 1973, but he used a complex analysis detour (cf. [Rus78]).
In [Sei84], Seidman applied Russell’s method to obtain an upper bound which,
taking [BLR92] into account, corresponds to theorem 2.3 with α∗ = β∗ ≈
42.86. Theorem 2.3 improves Seidman’s result beyond this slight improvement
of the rate α∗ insofar as the complex analysis multiplier method he uses does
not necessarily allow to reach the optimal α∗ in theorem 2.2.

The control transmutation method (cf. [Her75] for a survey on transmutations
in other contexts) introduced in section 5 relates the null-controllability of
the heat equation to the exact controllability of the wave equation in a direct
way (as opposed to Russell’s indirect complex analysis method). It is well-
known that the geometry of small time asymptotics for the homogeneous heat
semigroup t 7→ et∆ on L2(M) can be understood from the even homogeneous
wave group t 7→ W (t) (i.e. the group defined by W (t)w0 = w(t) where w solves
equation (53) with f = 0 and Cauchy data (w, ∂tw) = (w0, 0) at t = 0) through
Kannai’s formula (cf. [Kan77], [CGT82], and section 6.2 in the book [Tay96]) :

et∆ =
1√
4πt

∫ ∞

−∞
e−s2/(4t)W (s) ds . (6)

Our main idea is to replace the fundamental solution of the heat equation on
the line e−s2/(4t)/

√
4πt appearing in Kannai’s formula by some fundamental

controlled solution of the heat equation on the segment [−L, L] controlled at
both ends. We use the one dimensional theorem 2.2 to construct this funda-
mental controlled solution in section 5.

2.4 Open problems

We shall now survey some questions raised by the results we have presented
which we have been unable to answer yet.

To improve the rate α∗ in theorem 2.2 by a complex analysis method, one
could use the first method in [FR71], i.e. compute the null-controllability cost
on the half-line [0, +∞) explicitly by Vandermonde determinants and prove
a quantitative version of Schwartz’s theorem in [Sch43], i.e. estimate with
respect to L the best constant cL in the following statement : every u in the
closed linear hull in L2(0, +∞) of the real exponential sums t 7→ e−k2t (k ∈ N∗)
satisfies ‖u‖L2(0,+∞) ≤ cL‖u‖L2(0,L).
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Theorem 2.3 opens new tracks to improve the upper bound for the null-
controllability cost of (1) under the geodesics condition by methods which
are not complex analytical. To improve the rate α∗ in theorem 2.2 (or in the
multidimensional case of equation (1) when Ω and M are star-shaped with re-
spect to the same point) one could adapt the variational techniques (e.g. the
log convexity method) or the Carleman’s inequalities devised to prove unique
continuation theorems.

In the general case (without the geodesics condition), one could try to adapt
the null-controllability proofs which use Carleman inequalities with phases φ
to obtain an upper bound similar to the lower bound in theorem 2.1 in terms
of the following distance function d : d(x, y) = sup{φ(y)−φ(x)}, for all x and
y in M , where the supremum is taken over all Lipschitz functions φ : M → R
with |∇φ| ≤ 1 almost everywhere. There is a more geometric characterization
of d in terms of path of least action (cf. section 2 of [Nor97]).

3 Lower bound

The purpose of this section is to prove theorem 2.1.

As in section 1, let Ω be an open set in the n-dimensional Riemannian manifold
M such that Ω ⊂ M . Let (ωj)j∈N∗ be a nondecreasing sequence of nonnegative
real numbers and (ej)j∈N∗ be an orthonormal basis of L2(M) such that ej is
an eigenvector of −∆ with eigenvalue ω2

j . The heat kernel k can be defined for

all t > 0 and (x, y) ∈ M
2

by k(t, x, y) =
∑

j exp(−tω2
j )ej(y)ej(x). Our main

ingredient is Varadhan’s formula which says that (cf. th. 1.1 in [Nor97] for
example):

lim
t→0

t ln k(t, x, y) = −d(x, y)2/4 uniformly on compact sets of M
2

. (7)

We shall also use Weyl’s asymptotics for eigenvalues:

∃W > 0, #{j ∈ N∗ |ωj ≤ ω} ≤ Wωn (8)

and the following consequence of Sobolev’s embedding theorem:

∃E > 0, ∀j ∈ N∗, ‖ej‖L∞ ≤ Eω
n/2
j (9)

(cf. section 17.5 in [Hör85] for example). The unique continuation property for
elliptic operators implies that Y = {y ∈ M \ Ω | e1(y) 6= 0} is an open dense
set in M \ Ω, so that the supremun in theorem 2.1 can be taken over y ∈ Y
instead of y ∈ M .
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Let y ∈ Y and α < d(y, Ω)2/4 be fixed from now on. To prove theorem 2.1 we
shall find A > 0 and, for all T ∈]0, 1] small enough, some data uT

0 ∈ L2(M)
such that ‖et∆uT

0 ‖L2((0,T )×Ω) ≤ Ae−α/T‖eT∆uT
0 ‖L2(M). To give further insight

into the problem, we shall construct each uT
0 as a linear combination of a finite

number of modes ej only.

Let β be a real number such that α < β < d(y, Ω)2/4. Since Ω×{y} is compact

in M
2
, Varadhan’s formula (7) yields real numbers B > 0 and T ∈]0, 1] such

that

∀t ∈]0, T ], ∀x ∈ Ω, |k(t, x, y)| ≤ Be−β/t . (10)

Let ε ∈]0, 1] small enough as specified later. For all T ∈]0, T/(1 + ε)] consider
the data uT

0 (x) =
∑

ωj≤(εT )−1 exp(−εTω2
j )ej(y)ej(x). To estimate the corre-

sponding solution

uT (t, x) =
(
et∆uT

0

)
(x) =

∑
ωj≤(εT )−1

exp(−(εT + t)ω2
j )ej(y)ej(x) ,

we compare it with k(εT + t, x, y). Using that the heat semigroup is a con-
traction on L2(M), Parseval’s identity and (9), we obtain

sup
t∈]0,T ]

‖k(εT + t, x, y)− uT (t, x)‖L2(M) ≤ ‖k(εT, x, y)− uT
0 (x)‖L2(M)

=
∑

ωj>(εT )−1

|e−εTω2
j ej(y)|2 ≤ E

∑
ωj≥(εT )−1

e−ωjωn
j ≤ E ′ ∑

ωj≥(εT )−1

e−ωj/2 ,

for some E ′ > 0. But, Weyl’s law (8) yields, for c ≥ c0 > 0 and γ ≥ γ0 > 0,

∑
ωj≥c

e−γωj =
∑

k∈N∗

∑
kc≤ωj<(k+1)c

e−γωj ≤ W
∑

k∈N∗
((k + 1)c)n e−kcγ

≤ Wγ0

∑
k∈N∗

e−kcγe(k+1)cγ/4 = Wγ0e
−cγ/2

∑
k∈N

e−3kcγ/4 ≤ Wc0,γ0e
−cγ/2

where Wγ0 and Wc0,γ0 are positive real numbers which depend on their indices
but not on c and γ. Hence, with c = (εT )−1 > 1 = c0 and γ = γ0 = 1/2, we
obtain:

∃B′ > 0, ∀t ∈]0, T ] ‖k(εT + t, x, y)− uT (t, x)‖L2(M) ≤ B′e−1/(4εT )

Together with the estimate on k(εT + t, x, y) which follows from (10), this
estimate yields by the triangle inequality, choosing ε < 1/(4β) and setting
B′′ = |Ω|1/2B + B′,

‖uT‖L2((0,T )×Ω) ≤ (T |Ω|)1/2Be−β/((1+ε)T ) + T 1/2B′e−1/(4εT ) ≤ B′′e−β/((1+ε)T ) .
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But using Parseval’s identity and y ∈ Y , we have

‖eT∆uT
0 ‖L2(M) =

 ∑
ωj≤(εT )−1

|e−(1+ε)Tω2
j ej(y)|2

1/2

≥ e−2ω2
1 |e1(y)| > 0 .

Hence, choosing ε small enough so that α < β/(1 + ε) and setting
A = e−2ω2

1 |e1(y)|B′′, we have

∀T ∈]0, T/(1 + ε)], ‖uT‖L2((0,T )×Ω) ≤ Ae−α/T‖eT∆uT
0 ‖L2(M) .

Since A does not depend on T , this ends the proof of theorem 2.1.

4 The segment controlled at one end

In this section we prove theorem 2.2 for a more general linear parabolic equa-
tion on a segment controlled at one end (in particular, it proves that the-
orem 2.2 is true for the heat equation on a segment with any Riemannian
metric). We follow [FR71] quite closely.

For a positive a control time T , we consider the following mixed Dirichlet-
Cauchy problem on the space segment [0, X]:

∂tu = ∂x (p(x)∂xu) + q(x)u for (t, x) ∈]0, T [×]0, X[ , (11)

(a0 + b0∂x) uex=0 = 0 , (a1 + b1∂x) uex=X = g , uet=0 = u0 , (12)

a2
0 + b2

0 = a2
1 + b2

1 = 1 , 0 < p ∈ C2([0, X]) , q ∈ C0([0, X]) . (13)

With assumptions (13), the operator A on L2(0, X) with domain D(A) defined
by

(Au)(x) = ∂x (p(x)∂xu(x)) + q(x)u(x)

D(A) = H2(0, X) ∩ {(a0 + b0∂x) uex=0 = (a1 + b1∂x) uex=X = 0}

is self-adjoint and has a sequence {−λn}n∈N∗ of increasing eigenvalues and an
orthonormal Hilbert basis {en}n∈N∗ in L2(0, X) of corresponding eigenfunc-
tions, i.e. :

∀n ∈ N∗, −Aen = λnen and λn < λn+1 .

Moreover, (13) ensures the following eigenvalues asymptotics (cf. [FR71]):

∃ν ∈ R, λn =
π2

L2
(n + ν)2 + O(1) as n →∞ , where L =

∫ X

0

√
p(x) dx .

(14)
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Theorem 4.1. For any α > α∗ defined by (4), there exists C > 0 such that,
for any coefficients (13), for all T ∈ ]0, inf(π, L)2] and u0 ∈ L2(0, X) there is
a control g ∈ L2(0, T ) such that the solution u ∈ C0([0,∞), L2(0, X)) of (11)

and (12) satisfies u = 0 at t = T and ‖g‖L2(0,T ) ≤ CeαL2/T‖u0‖L2(0,X) .

As in [FR71], the proof applies to the slightly more general eigenvalue asymp-
totics λn = π2

L2 (n + ν) + o(n). We divide the proof of this theorem in three
steps.

4.1 Reduction to positive eigenvalues, to a segment of p-length L = π, and
to the control window ]− T/2, T/2[

As a first step, we reduce the problem to the case λ1 > 0 by the multiplier
t 7→ exp(λt), to the case L = π by the time rescaling t 7→ σt with σ = (π/L)2,
and to the time interval [−T/2, T/2] by the time translation t 7→ t− T/2.

The function u satisfies ∂tu = Au and (a1 + b1∂x) uex=X = g if and only if

ũ(t, x) = exp(λt)u(t, x) satisfies ∂tũ = Ãũ and (a1 + b1∂x) ũex=X = g̃ with

Ã = A + λ and g̃(t) = exp(λt)g(t). For any λ > −λ1, the lowest eigenvalue
of Ã ≥ λ1 + λ > 0 is positive. In Ã, q is changed into q + λ and p is un-
changed so that L is unchanged. Moreover ‖g‖L2(0,T ) ≤ exp(λT/2)‖g̃‖L2(0,T ) so

that ‖g̃‖L2(0,T ) ≤ C̃eαL2/T‖u0‖L2(0,X) implies the estimate in theorem 4.1 with

C = C̃ exp(λπ/2). This proves the reduction to positive eigenvalues.

We now prove the second reduction. Assume the theorem is true when L takes
the value L̃ = π. Given L > 0 and T ∈ ]0, inf(π, L)2] we set T̃ = σ2T ∈]0, L̃2]
and Ã = σ2A, where σ = (π/L)2. By applying the theorem to Ã on ]0, T̃ [, we

obtain ‖g̃‖L2(0,T̃ ) ≤ C̃eα̃L̃2/T̃‖u0‖L2(0,X). The function g(t) = g̃(σt) is a control
for the solution u(t, x) = ũ(σt, x) of ∂tu = Au on ]0, T [ at the cost ‖g‖L2(0,T ) =
‖g̃‖L2(0,T )L/π. Since T ≤ π2 implies L/π ≤ (L2/T )1/2, for all α > α̃ there is

a C such that for all L > 0 and T ∈ ]0, inf(π, L)2]: C̃eα̃L̃2/T̃ L/π ≤ CeαL2/T .
Therefore g satisfies the estimate in theorem 4.1.

These two reductions allow us to assume from now on λ1 > 0 and L = π.
Making a weaker assumption on the remainder term in (14), we shall only use
the following spectral assumption:

∀n ∈ N∗, 0 < λn < λn+1 and ∃ν ∈ R, λn = (n + ν)2 + o(n) as n →∞ .
(15)

It is obvious that theorem 4.1 is invariant by time translations and we shall
prove it for the control window ]− T/2, T/2[ instead of ]0, T [.
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4.2 Spectral reduction to a problem in complex analysis

In this second step, we recall that the control g in this theorem can be ob-
tained as a series expansion into a Riesz sequence {gn}n∈N∗ in L2(−T/2, T/2)
which is bi-orthogonal to the sequence {exp(−λnt)}n∈N∗ . We also recall how
the Paley-Wiener theorem reduces the construction of such biorthogonal func-
tions to the construction of entire functions with zeros and growth conditions
(this well-known method in complex analysis is the second method in [FR71]
called the Fourier transform method there). Our estimate on the control cost
‖g‖L2(−T/2,T/2) relies on a good estimate of ‖gn‖L2(−T/2,T/2) as T tends to zero.
This additional difficulty was first taken care of by Seidman in [Sei86] for
λn = in2 and it was recently overcome for more general sequences in [SAI00].
Our contribution is a slight improvement on the estimates of Seidman and his
collaborators in our less general setting.

In terms of the coordinates c = (cj)j∈N∗ of u0 in the Hilbert basis (ej)j∈N∗ , the
controllability problem in theorem 4.1 is equivalent to the following moment
problem (by straightforward integration by parts, cf. [FR71]):∫ T/2

−T/2
e−λn(T/2−t)γng(t) dt = −e−λnT cn ,

where γn = en(X)p(X)/b1 if b1 6= 0 and γn = −e′n(X)p(X)/a1 if b1 = 0. In
both cases, the asymptotic expansion of en yields that (|γn|) is bounded from
below by some positive constant γ. If {gn}n∈N∗ in L2(−T/2, T/2) is a sequence
which is bi-orthogonal to the sequence {exp(−λnt)}n∈N∗ , i.e.∫ T/2

−T/2
gn(t)e−λnt dt = 1 and ∀k ∈ N∗, k 6= n,

∫ T/2

−T/2
gn(t)e−λkt dt = 0,

(16)

then g(t) = −
∞∑

n=1

cn

γn

e−λnT/2gn(−t) is a formal solution to this moment prob-

lem. The following theorem in complex analysis allows to construct a bi-
orthogonal sequence such that this series converges and yields a good estimate
of ‖g‖L2(−T/2,T/2) as T tends to zero.

Theorem 4.2. Let α∗ be defined by (4). Let {λn}n∈N∗ be a sequence of real
numbers satisfying (15). For all ε > 0 there is a Cε > 0 such that, for all
τ ∈]0, 1] and n ∈ N∗, there is an entire function Gn satisfying

Gn is of exponential type τ , i.e. lim sup
r→+∞

r−1 sup
|z|=r

ln |Gn(z)| ≤ τ, (17)

Gn(iλn) = 1 and ∀k ∈ N∗, k 6= n, Gn(iλk) = 0, (18)

‖Gn‖L2 =
(∫ +∞

−∞
|Gn(x)|2 dx

)1/2

≤ Cεe
ε
√

λneα∗(π+2ε)2/(2τ) (19)

11



According to the Paley-Wiener theorem (1934), (17) implies that the function
x 7→ Gn(x) is the unitary Fourier transform of a function t 7→ gn(t) in L2(R)
supported in [−τ, τ ]. With τ = T/2, this yields:

Gn(x) =
1√
2π

∫ T/2

−T/2
gn(t)e−itx dt and ‖gn‖L2 = ‖Gn‖L2 . (20)

Hence (18) implies (16) and (19) implies that the series defining g converges
with:

‖g‖L2 ≤
∞∑

n=1

∣∣∣∣∣ cn

γn

∣∣∣∣∣ e−λnT/2‖gn‖L2 ≤ ‖u0‖L2

Cε

γ
eα∗(π+ε)2/T

( ∞∑
n=1

e−λnT e2ε
√

λn

)1/2

.

Since as T → 0 we have

∞∑
n=1

e−λnT e2ε
√

λn ≤ e2ε2/T
∞∑

n=1

e−λnT/2 ∼ e2ε2/T (T/2)−1/2Γ(1/2)/2 � C ′
εe

3ε2/T ,

this implies ‖g‖L2(−T/2,T/2) ≤ Cαeαπ2/T‖u0‖L2(0,X), with α = α∗(1 + 2ε/π)2 +
3ε2/π2 and Cα = CεC

′
ε/γ. Since α → α∗ as ε → 0, this completes the proof

that theorem 4.2 implies theorem 4.1.

4.3 Complex analysis multipliers

In this subsection we shall prove theorem 4.2 by the following classical method
in complex analysis (cf. section 14 in [Red77] for a concise account with ref-
erences, and the two volumes [Koo92] for an extensive monograph on mul-
tipliers): for all n ∈ N∗ and small τ > 0, we shall form an infinite product
Fn normalized by Fn(iλn) = 1 with zeros at iλk for every positive integer
k 6= n, and construct a multiplier Mn of exponential type τ with fast decay
at infinity on the real axis so that Gn = MnFn is in L2 on the real axis. At
infinity, it is well known that the growth of z 7→ ln |Fn(z)| can be bounded
from above by a power of |z| which is inverse to that of n 7→ |iλn| ∼ n2 (cf.
theorem 2.9.5 in [Boa54]) we prove that our ln Fn is essentially bounded by

z 7→ π
√
|z|+ o(

√
λn) where the constant π is optimal (cf. remark 4.5). There-

fore Mn has to be essentially bounded by Cn(τ) exp(−π
√
|x|) on the real axis,

for some constant Cn(τ) > 0. The key point (as in [Sei84], theorem 1 in [Sei86]
and theorem 2 in [SAI00]) is to construct a multiplier Mn such that Cn(τ) has
the smallest growth as τ tends to 0. The following two lemmas give the key
to the construction of Fn and Mn respectively.

Lemma 4.3. Let {λn}n∈N∗ be a sequence of real numbers satisfying (15). For
all ε > 0 there is a Aε > 0 such that, for all n ∈ N∗, the entire function fn

12



defined by fn(z) =
∏
k 6=n

(
1− z

λk

)
satisfies

ln |fn(z)| ≤ (π + ε)
√
|z|+ Aε (21)

|ln |fn(λn)|| ≤ ε
√

λn + Aε (22)

Proof. For every n ∈ N∗, we introduce the counting function of the sequence
{λk}k∈N∗\{n}:

Nn(r) = #{k ∈ N∗ \ {n} | λk ≤ r} .

From (15) we have N0 − 1 ≤ Nn ≤ N0 and
√

λn = n + ν + o(1). Since
λk ≤ r < λk+1 implies

√
λk − k ≤

√
r − N0(r) ≤

√
λk+1 − (k + 1) + 1, we

deduce |
√

r−Nn(r)−ν| ≤ 2+o(1). The proof uses the assumption (15) through
the estimates of the increments Λn := λn+1−λn and ∆n :=

√
λn+1−

√
λn and

their increments:

λn = n2 + 2νn + o(n) , Λn = 2n + o(n) , Λn − Λn−1 = o(n), (23)√
λn = n + ν + o(1) , ∆n = 1 + o(1) , ∆n −∆n−1 = o(1) , (24)

∀r ∈]0, λ1[, Nn(r) = 0 , ∃A > 0, ∀r, |
√

r −Nn(r)| ≤ A . (25)

We shall use repeatedly that for any real sequence {rn}n∈N∗

rn = o(1) ⇒
∣∣∣∣∣ln
(

1 +
rn

1 + o(1)

)∣∣∣∣∣ = |rn|(1 + o(1)) (26)

To prove (21), we estimate the left hand side in terms of Nn:

ln |fn(z)| ≤
∑
k 6=n

ln

(
1 +

|z|
λk

)
=
∫ ∞

0
ln

(
1 +

|z|
r

)
dNn(r)

=
∫ ∞

0
Nn(r)

|z|
|z|+ r

dr

r
=
∫ ∞

0

Nn(|z|s)
1 + s

ds

s

To estimate this last integral we use (25) and the integral computations:

∫ ∞

0

√
s

1 + s

ds

s
=
∫ ∞

0

2dr

1 + r2
= π ,

∫ ∞

λ1
|z|

ds

s(1 + s)
=
[
ln
∣∣∣∣ s

1 + s

∣∣∣∣]∞λ1
|z|

= ln(1 +
|z|
λ1

)

Thus we obtain ln |fn(z)| ≤ π
√
|z| + A ln(1 + |z|

λ1
), so that, for all ε > 0 there

is a A′
ε > 0 such that ln |fn(z)| ≤ (π + ε)

√
|z|+ A′

ε.
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To prove (22), we estimate the left hand side in terms of Nn:

ln |fn(λn)|=
∑
k<n

ln

(
λn

λk

− 1

)
+
∑
k>n

ln

(
1− λn

λk

)

=
∫ λ+

n−1

λ−1

ln

(
λn

r
− 1

)
dNn(r) +

∫ ∞

λ−n+1

ln

(
1− λn

r

)
dNn(r)

Integrating by parts yields ln |fn(λn)| = In + Bn with

In =
∫ λ+

n−1

λ−1

Nn(r)
λn

λn − r

dr

r
+
∫ ∞

λ−n+1

Nn(r)
λn

λn − r

dr

r

Bn =

[
Nn(r) ln

(
λn

r
− 1

)]λ+
n−1

λ−1

+

[
Nn(r) ln

(
1− λn

r

)]∞
λ−n+1

To estimate the boundary term Bn, we first simplify its expression using
Nn(λ−1 ) = 0 and Nn(λ+

n−1) = Nn(λ−n+1) = n − 1, then we sort out the in-
crements Λn = λn+1 − λn, and finally we use (23) and (26):

Bn = (n− 1)

[
ln

(
λn

λn−1

− 1

)
− ln

(
1− λn

λn+1

)]

= (n− 1)

[
ln
(
1− Λn − Λn−1

Λn

)
+ ln

(
1 +

Λn + Λn−1

λn−1

)]

= (n− 1)

[
o(n)

2n
(1 + o(1)) +

4n + o(n)

n2
(1 + o(1))

]
= o(1) .

Now we estimate the integral term In. Performing the change of variable r =
λns and using (25) yields: |In −

√
λnJn| ≤ AKn with

Jn =
∫ λ+

n−1
λn

λ−
1

λn

ds

(1− s)
√

s
+
∫ ∞

λ−
n+1
λn

ds

(1− s)
√

s

Kn =
∫ λ+

n−1
λn

λ−
1

λn

ds

(1− s)s
+
∫ ∞

λ−
n+1
λn

ds

(s− 1)s

The term Kn is readily computed and estimated using (23):
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Kn =
[
ln

s

1− s

]λ+
n−1
λn

λ−
1

λn

+
[
ln

s− 1

s

]∞
λ−

n+1
λn

= ln
λn+1

Λn

+ ln
λn−1

Λn−1

+ ln
(
λn(

1

λ1

+
1

λn

)
)

= 2 ln
n2 + O(n)

2n + o(n)
+ 2 ln

√
λn + O(1) = o(

√
λn) .

We compute Jn after a change of variable, and estimate it by (24) and (26)
after sorting out the increments ∆n =

√
λn+1 −

√
λn:

Jn =
∫ √

λn−1
+

√
λn√

λ1
−

√
λn

2dr

r2 − 1
+
∫ ∞
√

λn+1
−

√
λn

2dr

r2 − 1
=
[
ln

1− r

r + 1

]√λn−1
+

√
λn

√
λ1

−
√

λn

+
[
ln

r − 1

r + 1

]∞
√

λn+1
−

√
λn

= ln
(

∆n−1

∆n

)
+ ln

(√
λn+1 +

√
λn√

λn +
√

λn−1

)
− ln

(√
λn −

√
λ1√

λn +
√

λ1

)

= ln
(
1− ∆n −∆n−1

∆n

)
+ ln

(
1 +

∆n + ∆n−1√
λn +

√
λn−1

)
− ln

(
1− 2

√
λ1√

λn +
√

λ1

)

= o(1)(1 + o(1)) +
2 + o(1)

2n
(1 + o(1)) +

O(1)

n
(1 + o(1)) = o(1) .

Plugging the estimates Kn = o(
√

λn) and Jn = o(1) into |In−
√

λnJn| ≤ AKn

yields In = o(
√

λn). Plugging this estimate and Bn = o(1) into ln |fn(λn)| =
In + Bn yields ln |fn(λn)| = o(

√
λn), which completes the proof of (22).

Lemma 4.4. Let α∗ be defined by (4). For all d > 0 there is a D > 0 such
that for all τ > 0, there is an even entire function M of exponential type τ
satisfying: M(0) = 1 and

∀x > 0, ln |M(x)| ≤ α∗d
2

2τ
+ D − d

√
x and |M(ix)| ≥ 1 . (27)

Proof. Following Ingham and many others since 1934 (cf. section 14 in [Red77]
for theorems and references) we seek a multiplier M of small exponential type
decaying rapidly along the real axis in the following form:

M(z) =
∏
n∈N

sinc
(

z

an

)
where sinc(0) = 1, ∀z ∈ C∗, sinc(z) =

sin(z)

z
(28)

and where {an}n∈N is a non decreasing sequence of positive real numbers such
that τM =

∑
n∈N

1
an

< ∞. Since the cardinal sine function sinc is an even
entire function of exponential type 1 satisfying sinc(0) = 1 and sinc(ix) =
sinh(x)/x ≥ 1 for all x > 0, (28) defines an even entire function M of expo-
nential type τM satisfying M(0) = 1 and |M(ix)| ≥ 1 for all x > 0.

We define {an}n∈N by the slope A of its counting function N and its first term
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a0 (to be chosen large enough):

N(r) :=
∑
|an|≤r

1 = [A
√

u] for r ≥ 2 and a0 ≥ A−2 ,

where [x] denotes as usual the greatest integer smaller or equal to the real
number x. The exponential type τM of M is easily bounded from above by
τ = 2A/

√
a0:

τM :=
∑
n∈N

1

an

=
∫ ∞

0

dN(r)

r
=
∫ ∞

0

N(r)

r2
dr ≤

∫ ∞

a0

A
√

r

r2
dr =

2A
√

a0

=: τ ,

and we are left with estimating the decay of:

ln |M(x)| =
∫ ∞

a−0

f
(

x

r

)
dN(r) where f(θ) = ln sinc(θ) = ln

sin(θ)

θ
. (29)

We shall choose A such that, for all a0 ≥ A−2, ln |M(x)| ≤ −d
√

x + O(1) as
x → +∞, and then prove that: ln |M(x)| ≤ α∗d

2/(2τ)−d
√

x+O(1) as τ → 0
(equivalently a0 → +∞) uniformly in x > 0.

For x > a0 we take advantage of the boundedness of sine through the estimate
f(θ) ≤ − ln |θ| for |θ| ≤ 1, by splitting the integral in (29) into the two terms:

I =
∫ x

a−0

f
(

x

r

)
dN(r) ≤

∫ x

a−0

ln
∣∣∣∣ rx
∣∣∣∣ dN(r) = −

∫ x

a0

N(r)
dr

r

J =
∫ ∞

x
f
(

x

r

)
dN(r) =

∫ 1

0
f ′(θ)N

(
x

θ

)
dθ − f(1)N(x)

where right hand sides were integrated by parts and θ = x/r. Now we plug in
the basic estimate on N : A

√
r− 1 ≤ N(r) ≤ A

√
r for r ≥ 2. The first term is

now estimated by

I ≤ −A
∫ x

a0

dr√
r

+
∫ x

a0

dr

r
= −2A

(√
x−

√
a0

)
+ ln x− ln a0 . (30)

To estimate the second term, we first observe that the Hadamard factoriza-
tion of the cardinal sine function sinc(πz) =

∏
n∈N∗

(
1− z2

n2

)
and the Taylor

expansion of the logarithm at 1 imply:

f(θ) = −
∑

k∈N∗

ζ(2k)

k

(
θ

π

)2k

for |θ| < 1 , where ζ(s) =
∑

n∈N∗

1

ns
.

The second term is now estimated by
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J ≤
∫ 1

0
f ′(θ)

(
A
√

x√
θ
− 1

)
dθ − f(1)A

√
x (31)

= A
√

x

(∫ 1

0
f ′(θ)

dθ√
θ
− f(1)

)
− f(1)

=−A
√

x
∑

k∈N∗

(
2k

2k − 1
2

− 1

)
ζ(2k)

kπ2k
− f(1) = −AΣ∗√x− f(1) ,

where the series for f was differentiated, multiplied and integrated term by
term, and Σ∗ =

∑
k∈N∗

1
k(4k−1)

ζ(2k)
π2k . Putting (30) and (31) together yields:

∀x > a0 , ln |M(x)| ≤ −(2 + Σ∗)A
√

x + ln x− f(1) + 2A
√

a0 .

so that, for all d > (2 + Σ∗)A there is a D1 such that

∀d > (2 + Σ∗)A,∃D1 > 0,∀x > a0, ln |M(x)| ≤ 2A
√

a0 − d
√

x + D1 . (32)

Since | sinc | is bounded by 1: for all x, ln |M(x)| ≤ 0. Moreover d > 2A, so
that (32) implies

∀a0 ≥ A−2,∀x > 0, ln |M(x)| ≤ d
√

a0 − d
√

x + D1 . (33)

Since d > (2 + Σ∗)A and τ = 2A/
√

a0, this proves:

∀τ ≤ 2A2,∀x > 0, ln |M(x)| ≤ α1d
2

2τ
− d

√
x + D1 (34)

with α1 = 4/(2 + Σ∗).

For x < a0, we can also use the better estimate:

ln |M(x)| ≤
∫ ∞

a0

f
(

x

r

)
dN(r) =

∫ x/a0

0
f ′(θ)N

(
x

θ

)
dθ (35)

≤A
√

x
∫ x/a0

0
f ′(θ)

dθ√
θ
− f

(
x

a0

)

≤−A
√

a0

∑
k∈N∗

4kζ(2k)

k(4k − 1)

(
x

a0π

)2k

− f (1)

If we keep only the first term (i.e. k = 1) of the series in (32) and (35), we get

that for all d > (2 + 1
3

ζ(2)
π2 )A there is a D2 such that :

∀x > a0, ln |M(x)| ≤ 2A
√

a0 − d
√

x + D2 (36)

∀x < a0, ln |M(x)| ≤−A
√

a0
4ζ(2)

3π2

(
x

a0

)2

− f (1) .
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Now, for all x < a0

ln |M(x)| − 2A
√

a0 + d
√

x≤A
√

a0F
(

x

a0

)

with F (X) = −2+(2+ε)
√

X+1
3

ζ(2)
π2 (

√
X−4X2) = −2+(37/18+ε)

√
X−2X2/9

and ε = d/A−(2+ 1
3

ζ(2)
π2 ) > 0. Since F is increasing on [0, 1] and F (1) = ε−1/6,

choosing A so that ε < 1/6, yields that ln |M(x)| − 2A
√

a0 + d
√

x ≤ 0, for all
x < a0. Together with (36), this proves

∀x > 0, ln |M(x)| ≤ 2A
√

a0 − d
√

x + D2 (37)

Since d > (2 + 1
3

ζ(2)
π2 )A = 37A/18 and τ = 2A/

√
a0, this proves:

∀τ ≤ 2A2,∀x > 0, ln |M(x)| ≤ α2d
2

2τ
− d

√
x + D2 (38)

with α2 = 2(36/37)2.

Equations (34) and (38) complete the proof of the lemma 4.4 with α∗ =
min{α1, α2}. Since we have checked on a computer that α1 > α2, we decided
to state the lemma with α∗ = α2, i.e. (4).

To prove theorem 4.2, we use lemmas 4.3 and 4.4 with d = π +2ε and define :

Gn = FnMn with Fn(z) = fn(−iz)/fn(λn) and Mn(z) = M(z)/M(iλn) .

Thanks to lemma 4.3, the entire function Fn satisfies

Fn(iλn) = 1 and ∀k ∈ N∗, k 6= n, Fn(iλk) = 0, (39)

ln |Fn(z)| ≤ (π + ε)
√
|z|+ ε

√
λn + 2Aε (40)

where (39) is an obvious consequence of the definitions of fn and Fn, and (40)
is a consequence of the estimates (21) and (22).

Thanks to lemma 4.4, there is a Dε > 0 such that the entire function Mn is
of exponential type τ and satisfies

Mn(iλn) = 1 (41)

∀x ∈ R, ln |Mn(x)| ≤ α∗d
2

2τ
+ Dε − d

√
|x| (42)
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where (41) is an obvious consequence of the definitions of M and Mn, and
(42) is a consequence of (27) since M is even.

The entire function Gn has the same exponential type as Mn since (40) implies
that the exponential type of Fn is 0. Hence (17) holds. Putting (39) and (41)
together yields (18). Since d = π + 2ε, (40) and (42) imply

∀x ∈ R, ln |Gn(x)| ≤ Dε + 2Aε − ε
√
|x|+ ε

√
λn +

α∗d
2

2τ
.

Hence (19) holds with Cε = eDε+2Aε

(∫ +∞

−∞
e−2ε

√
|x| dx

)1/2

. Theorem 4.2 is

proved.

Remark 4.5. Under assumption (15), lemma 3 in [SAI00] (which applies to

much more general sequences) proves that Fn(z) =
∏
k 6=n

1− ( z − λn

λk − λn

)2
 sat-

isfies (39) and ln |Fn(λn+z)| ≤ 2π
√
|z|, hence ln |Fn(z)| ≤ 2π

√
|z|+O(

√
λn). In

(40), the estimate O(
√

λn) improves to o(
√

λn) and the constant 2π improves
to the optimal π (optimality can be deduced from theorem 4.1.1 in [Boa54]).

Seidman obtained lemma 4.4 for α∗ = β∗ with β∗ ≈ 42.86 in the proof of
Theorem 3.1 in [Sei84]. His later Theorem 1 in [Sei86] improves the rate to
α∗ = 2β∗ with β∗ ≈ 4.17. Theorem 2 in [SAI00], which applies to much more
general spectral sequences, yields lemma 4.4 for α∗ = 24. The argument used
in section 3 can be used to prove that lemma 4.4 does not hold for α∗ < 1/4. It
would be interesting to determine the smallest value of α∗ for which it holds.

5 Upper bound under the geodesics condition

In this section we prove theorem 2.3 in three steps. D′(O) denotes the space of
distributions on the open set O endowed with the weak topology and M(O)
denotes the subspace of Radon measures on O.

5.1 The segment controlled at both ends

In a first step we prove that the upper bound for the null-controllability cost
of the heat equation on the segment [0, L] controlled at one end is the same
as the null-controllability cost of the heat equation on the twofold segment
[−L, L] controlled at both ends.
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Given a time T > 0 and a length L > 0, we denote by D (respectively N)
some continuous operator from L2(0, L) to L2(0, T ) allowing to control to
zero in time T the heat equation on [0, L] with zero Dirichlet (respectively
Neumann) condition at 0 by a Dirichlet control at L. More precisely, for all
u0 ∈ L2(0, L) the solution u ∈ C0([0,∞), L2(0, L)), denoted by u = SDu0

(respectively u = SNu0), of the Cauchy problem in theorem 2.2 with B = 1
(respectively B = ∂s) and g = Du0 (respectively g = Nu0) satisfies u = 0 at
t = T .

Proposition 5.1. For any time T > 0 and any length L > 0, there is a
continuous operator K from L2(−L, L) to L2(0, T )2 allowing to control to
zero in time T the heat equation on [−L, L] by Dirichlet controls at both
ends at the same cost as D and N , i.e. for all v0 ∈ L2(−L, L) the solution
v ∈ C0([0,∞), L2(−L, L)) of :

∂tv−∂2
sv = 0 in ]0, T [×]−L, L[, (ves=−L, ves=L) = Kv0, vet=0 = v0 (43)

satisfies v = 0 at t = T and ‖K‖ ≤ sup(‖D‖, ‖N‖).

Proof. Given v0 ∈ L2(−L, L), we decompose it in odd and even parts :
v0 = v0,odd + v0,even. We denote by u0,odd and u0,even the restrictions of v0,odd

and v0,even to [0, L], We denote by f = Du0,odd and g = Nu0,even the corre-
sponding controls. We denote by uodd = SDu0,odd and ueven = SNu0,even the
corresponding solutions.

We define v ∈ L2([0, T ] × [−L, L]) by v(t,±s) = ueven(t, s) ± uodd(t, s) for
s ≥ 0. Since

(∂t − ∂2
s )ueven = (∂t − ∂2

s )uodd = 0 in D′(]0, T [×]0, L[) ,

we have, denoting the Dirac mass at s = 0 by δs ∈ D′(R),

(∂t − ∂2
s )v = 2uodd(t, 0)⊗ δ′s(0) + 2∂sueven(t, 0)⊗ δs(0) .

But uodd(t, 0) = ∂sueven(t, 0) = 0 by the definition of D and N . Hence
(∂t − ∂2

s )v = 0. Moreover v(0, s) = v0(s), v(T, s) = 0, v(t, L) = g(t) + f(t),
v(t,−L) = g(t) − f(t). Therefore, setting Kv0 = (g − f, g + f) yields an
operator K satisfying the null-controllability property required.

To finish the proof we estimate its cost ‖K‖. Taking the Euclidean norm for
Kv0 = (g − f, g + f), we have ‖Kv0‖2

L2(0,T )2 = 2‖f‖2
L2(0,T ) + 2‖g‖2

L2(0,T ). Since
f = Du0,odd and g = Nu0,even, setting C = sup(‖D‖, ‖N‖) we have

‖Kv0‖2
L2(0,T )2 ≤ 2C2

(
‖u0,odd‖2

L2(0,L) + ‖u0,even‖2
L2(0,L)

)
(44)
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Moreover, since 2u0,odd(s) = v0(s) − v0(−s) and 2u0,even(s) = v0(s) + v0(−s)
for s ∈ [0, L], we have

‖2u0,odd‖2
L2(0,L) = ‖v0‖2

L2(−L,L) − 2
∫ L

0
v0(s)v0(−s) ds (45)

‖2u0,even‖2
L2(0,L) = ‖v0‖2

L2(−L,L) + 2
∫ L

0
v0(s)v0(−s) ds . (46)

Equations (44), (45) and (46) imply ‖Kv0‖L2(0,T )2 ≤ C‖v0‖L2(−L,L).

5.2 The fundamental controlled solution

In a second step we construct a “fundamental controlled solution” v of the
heat equation on the segment controlled by Dirichlet conditions at both ends.

Proposition 5.2. If theorem 2.2 holds for some rate α∗, then for any α > α∗,
there exists A > 0 such that for all L > 0 and T ∈ ]0, inf(π/2, L)2] there is a
v ∈ C0([0, T ],M(]− L, L[)) satisfying

∂tv − ∂2
sv = 0 in D′(]0, T [×]− L, L[) , (47)

vet=0 = δ and vet=T = 0 , (48)

‖v‖L2(]0,T [×]−L,L[) ≤ AeαL2/T . (49)

We shall sometimes refer to a function v satisfying the above requirements as
a fundamental controlled solution on ]0, T [×]− L, L[ at cost (A, α).

Proof. We first reduce the problem to the case L = π/2 using the rescal-
ing (t, s) 7→ (σ2t, σs), σ > 0 with σ = π/(2L). Given L > 0 and T ∈
]0, inf(π/2, L)2], we set L̃ = π/2 and T̃ = σ2T ∈]0, L̃2]. Let ṽ be a funda-
mental controlled solution on ]0, T̃ [×]− L̃, L̃[ at cost (Ã, α̃). Setting v(t, s) =
σṽ(σ2t, σs) defines a fundamental controlled solution v on ]0, T [×]− L, L[ at
cost (Ã/

√
σ, α̃). Since T ≤ L̃2, we have Ã/

√
σ ≤ Ã(L2/T )1/4. Hence for all

α > α̃ there is an A > 0 such that v is also a fundamental controlled solution
on ]0, T [×] − L, L[ at cost (A, α). Therefore, it is enough to prove proposi-
tion 5.2 in the particular case L = π/2.

We assume theorem 2.2 holds for some rate α∗. Let α̃ > α̃∗ > α∗, L = L̃ = π/2
and T̃ ∈]0, L̃2] be fixed from now on. We set α = (1− ε)α̃∗ and T = (1− ε)T̃
where ε ∈]0, 1[ is chosen such that α > α∗. Applying theorem 2.2 once with
B = 1 and once with B = ∂s, and then applying proposition 5.1 yields a C > 0
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independent of T̃ such that:

‖K‖ ≤ sup(‖D‖, ‖N‖) ≤ CeαL2/T = Ceα̃∗L̃2/T̃ . (50)

We define ṽ ∈ C0([0, T̃ ],M(]− L̃, L̃[)) as the solution of

∂tṽ − ∂2
s ṽ = 0 in ]0, T̃ [×]− L̃, L̃[, (ṽes=−L̃, ṽes=L̃) = b, ṽet=0 = δ

where the control b ∈ L2(0, T̃ )2 is defined by b(t) = 0 for t ≤ εT̃ and
by b(εT̃ + t′) = K(ṽet=εT )(t′) for t′ ∈]0, T [. Note that v0 = ṽet=εT is just
the Dirac mass at the origin smoothed out by the homogeneous heat semi-
group during a time εT̃ , so that v0 ∈ L2(−L, L). Moreover εT̃ + T = T̃ and
v(t, s) = ṽ(εT̃ + t, s) is the solution of (43), so that ṽet=T̃ = vet=T = 0.

To finish the proof that ṽ is a fundamental controlled solution on
]0, T̃ [×] − L̃, L̃[, we estimate its L2(]0, T̃ [×] − L̃, L̃[) norm which we abbre-

viate as ‖ṽ‖T̃ ,L̃. Setting ej(s) = sin(j(s + π/2))
√

2/π defines an orthonormal

basis (ej)j∈N∗ of L2(]− L̃, L̃[) such that ej is an eigenvector of −∆s with eigen-
value j2. In the weak topology, the Dirac mass can be decomposed in this
basis as δ(s) =

∑
j ej(0)ej(s). Note that the sequence (ej(0))j∈N∗ is bounded.

For t ∈]0, T̃ ], we introduce the coordinates (ṽj(t))j∈N∗ of ṽ(t, ·) ∈ L2(]− L̃, L̃[)
in the Hilbert basis (ej)j∈N∗ . Using these coordinates and abbreviating the
L2(]0, T̃ [) norm as ‖ · ‖T̃ , the function ṽ and its norm write

ṽ(t, s) =
∑
j

ṽj(t)ej(s) and ‖ṽ‖2
T̃ ,L̃

=
∫ T̃

0

∑
j

|ṽj(t)|2 dt =
∑
j

‖ṽj‖2
T̃

. (51)

As in [FR71], these coordinates can be computed by ṽj(0) = ej(0) and

ṽj(t) = e−j2tṽj(0) +
∫ t

0
e−j2(t−t′)

(
e′j(−L̃)ṽ(t′,−L̃)− e′j(L̃)ṽ(t′, L̃)

)
dt′ . (52)

Using Young’s inequality to estimate the second term of the right hand side,

we have (since T̃ < 4, |e′j(±L̃)| = |ṽj(0)| =
√

2/π < 1)

‖ṽj‖T̃ ≤ |ṽj(0)|‖e−j2t‖T̃ + ‖e−j2t‖L1(]0,T̃ [)

(
|e′j(−L̃)|‖ṽ(t′,−L̃)‖T̃ + |e′j(L̃)|‖ṽ(t′, L̃)‖T̃

)
≤ 4

j

(
1 + ‖ṽ(t′,−L̃)‖T̃ + ‖ṽ(t′, L̃)‖T̃

)
.

Hence equation (51) implies

‖ṽ‖2
T̃ ,L̃
≤
(
1 + ‖ṽ(t′,−L̃)‖2

T̃
+ ‖ṽ(t′, L̃)‖2

T̃

)∑
j

43

j2
=

43π2

6

(
1 + ‖Kv0‖2

L2(]0,T̃ [)

)
.
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But there is an A′ > 0 independent of εT̃ < 1 such that:

‖v0‖2
L2(]−L̃,L̃[)

=
∑
j

|ṽj(εT̃ )|2 ≤
∑
j

e−2j2εT̃ ≤ A′
√

εT̃
.

Hence equation (50) yields a C ′ > 0 independent of T̃ such that:

‖ṽ‖T̃ ,L̃ ≤
8π√

6

(
1 + 2

√
π‖K‖‖v0‖L̃

)
≤ C ′
√

T̃
eα̃∗L̃2/T̃ .

Since α̃ > α̃∗, there is an Ã > 0 independent of T̃ such that:

‖ṽ‖2
T̃ ,L̃

≤ Ãeα̃L̃2/T̃ . This completes the proof that ṽ is a fundamental con-

trolled solution on ]0, T̃ [×]− L̃, L̃[ at cost (Ã, α̃).

5.3 The transmutation of waves into heat

In a third step we perform a transmutation of an exact control for the wave
equation into a null-control for the heat equation. Our transmutation formula
can be regarded as the analogue of Kannai’s formula (6) where the kernel
e−s2/(4t)/

√
4πt, which is the fundamental solution of the heat equation on the

line, is replaced by the fundamental controlled solution that we have con-
structed in the previous step. To ensure existence of an exact control for the
wave equation we use the geodesics condition of Bardos-Lebeau-Rauch (al-
ready mentioned above theorem 2.3):

Theorem 5.3 ([BLR92]). If L > LΩ then for all (w0, w1) ∈ H1
0 (M)×L2(M)

and all (w2, w3) ∈ H1
0 (M)×L2(M) there is a control function f ∈ L2(R+×M)

such that the solution w ∈ C0(R+, H1
0 (M)) ∩ C1(R+, L2(M)) of the mixed

Dirichlet-Cauchy problem (n.b. the time variable is denoted by s here):

∂2
sw −∆w = 1]0,L[×Ωf in R+ ×M, w = 0 on R+ × ∂M, (53)

with Cauchy data (w, ∂sw) = (w0, w1) at s = 0, satisfies (w, ∂sw) = (w2, w3)
at s = L. Moreover, the operator SW : (H1

0 (M)× L2(M))
2 → L2(R+ × M)

defined by SW ((w0, w1), (w2, w3)) = f is continuous.

We assume that theorem 2.2 holds for some rate α∗. Let α > α∗,
T ∈]0, inf(1, L2

Ω)[ and L > LΩ be fixed from now on. Let A > 0 and
v ∈ L2(]0, T [×]− L, L[) be the corresponding constant and fundamental con-
trolled solution given by proposition 5.2. We define v ∈ L2(R2) as the extension
of v by zero, i.e. v(t, s) = v(t, s) on ]0, T [×] − L, L[ and v is zero everywhere
else. It inherits from v the following properties
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∂tv − ∂2
sv = 0 in D′(]0, +∞[×]− L, L[) , (54)

vet=0 = δ and vet=T = 0 , (55)

‖v‖L2(]0,+∞[×R) ≤ AeαL2/T . (56)

Let u0 ∈ H1
0 (M) be an initial data for the heat equation (1). Let w and

f be the corresponding solution and control function for the wave equation
obtained by applying theorem 5.3 with w0 = u0 and w1 = w2 = w3 = 0. We
define w ∈ L2(R; H1

0 (M)) and f ∈ L2(R × M) as the extensions of w and
f by reflection with respect to s = 0, i.e. w(s, x) = w(s, x) = w(−s, x) and
f(s, x) = f(s, x) = f(−s, x) on R+ ×M . Since w1 = 0, equation (53) imply

∂2
sw −∆w = 1]−L,L[×Ωf in D′(R×M), w = 0 on R× ∂M, (57)

The main idea of our proof is to use v as a kernel to transmute w and f into
a solution u and a control g for (1). Since v ∈ L2(R2), w ∈ L2(R; H1

0 (M)) and
f ∈ L2(R×M), the transmutation formulas

u(t, x) =
∫

R
v(t, s)w(s, x) ds and g(t, x) =

∫
R

v(t, s)f(s, x) ds , (58)

define functions u ∈ L2(R; H1
0 (M)) and g ∈ L2(R × M). Since w(s, x) =

∂sw(s, x) = 0 for |s| = L, equations (57) and (54) imply

∂tu−∆u = 1
]0,T [×Ω

g in D′(]0, +∞[×M) and u = 0 on ]0, T [×∂M, (59)

The property (55) of v implies

uet=0 = u0 and uet=T = 0 . (60)

Setting C =
√

2A‖SW‖, Cauchy-Schwarz inequality with respect to s, the
estimate (56) and ‖f‖2

L2(R×M) = 2‖SW ((u0, 0), (0, 0))) ‖2
L2(R+×M) imply

‖g‖L2(R×M) ≤ ‖v‖L2(R2)‖f‖L2(R×M) ≤ CeαL2/T‖u0‖H1
0 (M) . (61)

We have proved that for all α > α∗ there is a C > 0 such that for all
u0 ∈ H1

0 (M), T ∈]0, min{1, L2
Ω}[ and L > LΩ, there is a control g which

solves the null-controllability problem (59), (60), at a cost so estimated in
(61). The same property holds for the space of data L2(M) instead of H1

0 (M),
since ‖eεT∆u0‖H1

0 (M) ≤ ‖u0‖L2(M)C0/
√

εT with ε ∈]0, 1[ and C0 = ‖(1 +

λ)e−2
√

λ‖1/2
L∞(R). Therefore lim sup

T→0
T ln CT,Ω ≤ αL2. Letting α and L tend re-

spectively to α∗ and LΩ in this estimate completes the proof of (5).
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