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THE CONTROL TRANSMUTATION METHOD
AND THE COST OF FAST CONTROLS∗

LUC MILLER†

Abstract. In this paper, the null controllability in any positive time T of the first-order equation
(1) ẋ(t) = eiθAx(t)+Bu(t) (|θ| < π/2 fixed) is deduced from the null controllability in some positive
time L of the second-order equation (2) z̈(t) = Az(t) + Bv(t). The differential equations (1) and (2)
are set in a Banach space, B is an admissible unbounded control operator, and A is a generator of
cosine operator function.

The control transmutation method explicits the input function u of (1) in terms of the input
function v of (2): u(t) =

R
R k(t, s)v(s) ds, where the compactly supported kernel k depends on T and

L only. It proves roughly that the norm of a u steering the system (1) from an initial state x(0) = x0

to the final state x(T ) = 0 grows at most like ‖x0‖ exp(α∗L2/T ) as the control time T tends to zero.
(The rate α∗ is characterized independently by a one-dimensional controllability problem.)

In the applications to the cost of fast controls for the heat equation, L is roughly the length of
the longest ray of geometric optics which does not intersect the control region.

Key words. Controllability, fast controls, control cost, transmutation, cosine operator function,
heat equation, linear Ginzburg-Landau equation.

AMS subject classifications. 93B05, 93B17, 47D09

1. Introduction. This paper concerns the relationship between the null-con-
trollability of the following first and second order controllable systems:

ẋ(t) = eiθAx(t) + Bu(t) (t ∈ R+), x(0) = x0, (1.1)
z̈(t) = Az(t) + Bv(t) (t ∈ R), z(0) = z0, ż(0) = 0, (1.2)

where x and z are the systems trajectories in the Banach space X, x0 and z0 are
initial states, u and v are input functions with values in the Banach space U , A is
an unbounded generator, B is an unbounded control operator, θ is a given angle in
]−π/2, π/2[, each dot denotes a derivative with respect to the time t and R+ = [0,∞)
(the detailed setting is given in §2).

Equation (1.1) with u = 0 describes an irreversible system (always smoothing)
and we think of it as a parabolic distributed system with infinite propagation speed.
Equation (1.2) with v = 0 describes a reversible system (e.g. conservative) and we
think of it as a hyperbolic distributed system with finite propagation speed.

For example, if A is the negative Laplacian on a Euclidean region and the input
function is a locally distributed boundary value set by B, then (1.2) is a boundary
controlled scalar wave equation and (1.1) with θ = 0 is a boundary controlled heat
equation (§6 elaborates on this example). Thus, this paper applies to the control-
lability of the diffusion equation that models the propagation of heat in a media at
rest when the temperature does not vary too much. This diffusion equation is also a

∗ In the final version of this preprint, accepted for publication in SIAM J. Control and Optimiza-
tion on January 26, 2006, remark 6.5 and the reference to [16] in footnote 3 have been erased. Since
the previous version, posted on arxiv.org and submitted to SIAM on February 4, 2004, remarks 6.3,
6.4, 6.5 and Lemma 2.4 have been added. The third paragraph and the footnotes added to the
introduction are only mildly relevant.
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200 Av. de la République, 92001 Nanterre Cedex, France (miller@math.polytechnique.fr). This work
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simplified model for various physical phenomena in neutronics, viscous fluids mechan-
ics and electromagnetism when A is a more general coercive symmetric second-order
elliptic operator (cf. §I.B.1.1 in [11]). If θ 6= 0, then (1.1) interpolates between the
heat equation and the Schrödinger equation. Thus, this paper applies to the control-
lability of the linear part of the complex Ginzburg-Landau equation which describes
a vast variety of physical phenomena from nonlinear waves to second-order phase
transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to
liquid crystals and strings in field theory (cf. [2]). In particular, the one-dimensional
linearized Ginzburg-Landau model considered in [1] enters this setting. If π/2−θ is a
small positive constant, then (1.1) is a viscous perturbation of the Schrödinger equa-
tion which appears naturally in the building of stable numerical schemes (cf. [19]).
Although conservative physical systems (e.g. the linear system of elasticity, Maxwell’s
equations, cf. §I.B.1.2 in [11]) provide examples of (1.2) for which some controllability
results are known, we have not found one yet for which the corresponding first-order
system (1.1) is relevant to physics or engineering (besides the scalar wave equation
considered in §6).

This paper presents the control transmutation method (cf. [18] for a survey on
transmutations in other contexts) which can be seen as a shortcut to Russell’s famous
harmonic analysis method in [27]. It consists in explicitly constructing controls u
in any time T for the heat-like equation (1.1) in terms of controls v in time L for
the corresponding wave-like equation (1.2), i.e. u(t) =

∫
R k(t, s)v(s) ds, where the

compactly supported kernel k depends on T and L 1. It proves that the exact con-
trollability of (1.2) in some time L implies the null controllability of (1.1) in any time
with a relevant upper bound on the cost of controls for (1.1) as T tends to 0, in
short the cost of fast controls (as in the title of this paper and [31]). Thanks to the
geodesic condition of Bardos-Lebeau-Rauch (cf. [6]) for the controllability of the wave
equation, the application of this method to the boundary controllability of the heat
equation (cf. §6) yields new geometric bounds on the cost of fast controls, extending
the results of [23] on internal controllability 2. This method applies as soon as the
wave equation is controllable, no matter how singular the coefficients in A are (e.g.
discontinuous coefficients in transmission problems in [12], coefficients of bounded
variation in [16]) but it does not seem to adapt to time-dependent coefficients. The
companion paper [22] concerns the quite different case |θ| = π/2 (in particular there
is no smoothing effect) and applies to the Schrödinger equation, which is the control
problem to which a transmutation method was first applied by Phung in [26].

The relationship between first and second order controllable systems has been
investigated in previous papers, always with θ = 0 and the additional initial data
ż(0) = z1 in X (i.e. considering trajectories of (1.2) in the state space X × X).
In [13], it is proved that the approximate controllability of (1.2) with ż(0) = z1 in
some time implies the approximate controllability of (1.1) for any time (the control
transmutation method yields an alternative proof), and proves the converse under

1N.b. although L denotes a time here, it also denotes a length in the construction of k and in
the main application to the wave and heat equations; the notation is meant as a reminder of this key
fact of the method.

2N.b. the controllability of the heat equation holds even if the geometry prevents the controlla-
bility of the wave equation but in that case no explicit geometric bound on the cost of fast controls
is known. For interior controllability, a bound of the form exp(Cβ/T β) for any β > 1 is proved in
[25] but the positive constant Cβ is not explicit. A better bound of the form exp(C1/T ) is proved
in [15], at least in the Euclidean case (cf. remark 6.4), but the positive constant C1 is not explicit
either.
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some assumptions on the spectrum of A. The converse is investigated further in [33]
(in Hilbert spaces) and [32]. In a restricted setting, the null controllability of (1.1)
was deduced from the exact controllability of (1.2) with ż(0) = z1 in [27] and [28] by
the indirect method of bi-orthogonal bases 3.

The study of the cost of fast controls was initiated by Seidman in [29] with a
result on the heat equation obtained by Russell’s method. Seidman also obtained
results on the Schrödinger equation by working directly on the corresponding window
problem for series of complex exponentials (see [24] for improvements and references).
With collaborators, he later treated the case of finite dimensional linear systems (cf.
[31]) and generalized the window problem to a larger class of complex exponentials
(cf. [30]). Fernández-Cara and Zuazua obtained results on the cost of fast interior
controls for the heat equation discussed in remark 6.4. Since their approach is based
on global Carleman estimates (cf. [17]) it should extend to boundary controllability,
and to a very large class of equations with variable coefficients possibly depending on
time as-well. The control transmutation method generalizes upper bounds on the cost
of fast controls from the one-dimensional setting (which reduces to a window problem)
to the general setting which we specify in the next section. Some open problems are
stated in remarks 3.3 and 6.4.

2. The setting. We assume that A is the generator of a strongly continuous
cosine operator function Cos (i.e. the second-order Cauchy problem for z̈(t) = A(t)z is
well posed and Cos is its propagator). For a textbook presentation of cosine operator
functions, we refer to chap. 2 of [14] or §3.14 of [3]. The associated sine operator
function is Sin(t) =

∫ t

0
Cos(s)ds (with the usual Bochner integral). Cos and Sin are

strongly continuous functions on R of bounded operators on X. Moreover A generates
a holomorphic semigroup T of angle π/2 (cf. th. 3.14.17 of [3]). In particular S(t) =
T (eiθt) defines a strongly continuous semigroup (S(t))t∈R+ of bounded operators on
X. In this setting, for any source term f ∈ L1

loc(R, X), for any initial data x0, z0 and
z1 in X, the inhomogeneous first and second order Cauchy problems

ẋ(t) = eiθAx(t) + f(t) (t ∈ R+), x(0) = z0, (2.1)
z̈(t) = Az(t) + f(t) (t ∈ R), z(0) = z0, ż(0) = z1, (2.2)

have unique mild solutions x ∈ C0(R+, X) and z ∈ C0(R, X) defined by:

x(t) = S(t)x0 +
∫ t

0

S(t− s)f(s)dt, z(t) = Cos(t)z0 + Sin(t)z1 +
∫ t

0

Sin(t− s)f(s)dt.

Remark 2.1. When A is a negative self-adjoint unbounded operator on a Hilbert
space, T , Cos and Sin are simply defined by the functional calculus as T (t) = exp(tA),
Cos(t) = cos(t

√
−A) and Sin(t) = (

√
−A)−1 sin(t

√
−A).

Following [34], we now make natural assumptions on B for any initial data in the
state space X to define a unique continuous trajectory of each system (1.1) and (1.2).
Let X−1 be the completion of X with respect to the norm ‖x‖−1 = ‖(A − β)−1x‖

3 N.b. the systematic approach to controllability based on bi-orthogonal bases (cf. [4]) does
not apply in our general setting where A may not have eigenfunctions (e.g. on some unbounded
domains). When it does apply, it builds on some knowledge about the eigenvalues and the analysis
of some exponential series, whereas the control transmutation method per se does not (cf. remark
3.3). E.g. in the abstract presentation of Russell’s method in §2 of [16], the eigenvalues are assumed
to grow quadratically. A more detailed comparison can be found in [23], in the specific case which
lead the author to this new method.
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for some β ∈ C outside the the spectrum of A. X−1 is also the dual of the space
X1 defined as the domain D(A) with the norm ‖x‖1 = ‖(A− β)x‖. We assume that
B ∈ L(U,X−1) is an admissible unbounded control operator in the following sense:

∀t > 0,∀u ∈ L2([0, t];U),
∫ t

0

S(s)Bu(s)ds ∈ X and
∫ t

0

Sin(s)Bu(s)ds ∈ X. (2.3)

In this setting, for any x0 and z0 in X, for any u and v in L2
loc(R+;U), the unique

solutions x and z in C0(R;X) of (1.1) and (1.2) respectively are defined by:

x(t) = S(t)x0 +
∫ t

0

S(t− s)Bu(s)dt, z(t) = Cos(t)z0 +
∫ t

0

Sin(t− s)Bv(s)ds. (2.4)

The natural notions of controllability cost for the linear systems (1.1) and (1.2) are:
Definition 2.2. The system (1.1) is null-controllable in time T if for all x0

in X, there is a u in L2(R+;U) such that u(t) = 0 for t > T and x(T ) = 0. The
controllability cost for (1.1) in time T is the smallest positive constant κ1,T such that,
for all φ0, there is such a u satisfying:

∫ T

0
‖u(t)‖2dt 6 κ1,T ‖x0‖2.

The system (1.2) is null-controllable in time T if for all z0 in X, there is a v in
L2(R+;U) such that v(t) = 0 for t > T and z(T ) = ż(T ) = 0. The controllability
cost for (1.2) in time T is the smallest positive constant κ2,T such that, for all z0,
there is such a v satisfying:

∫ T

0
‖v(t)‖2dt 6 κ2,T ‖z0‖2.

Remark 2.3. Equivalently, for all xT in S(T )X, there is a u in L2(0, T ;U) such
that x(0) = 0 and x(T ) = xT , and, for all z0, z1, z2 and z3 in X, there is a v in
L2(0, T ;U) such that (z(0), ż(0)) = (z0, z1) and (z(T ), ż(T )) = (z2, z3). This is the
usual notion of exact controllability for (1.2) (cf. lemma 2.4).

Although the notion of null-controllability for (1.2) in def. 2.2 seems weaker than
usual, the following lemma proves that it is equivalent to the usual notion.

Lemma 2.4. If (1.2) is null-controllable in time T in the sense of def. 2.2 then, for
all z0 and z1 in X, there is an input v in L2(R+;U) such that v(t) = 0 for t > T and
the solution of z̈(t) = Az(t)+Bv(t) (t ∈ R) with initial condition (z(0), ż(0)) = (z0, z1)
satisfies the final condition (z(T ), ż(T )) = (0, 0).

Proof. Assume that the system (1.2) satisfies def. 2.2 and let z0 and z1 be in X. We
shall build an input w in L2(0, T ;U) such that the solution y of ÿ(t) = Ay(t)+Bw(t)
with (y(0), ẏ(0)) = (0, z1) satisfies (y(T ), ẏ(T )) = (y0, 0) for some y0 ∈ X. Let v1 be
the input v in def. 2.2 and let v2 be the input v in def. 2.2 with z0 replaced by y0.
Due to the linearity of the system, the input v1(t)−v2(T − t)+w(t) steers the system
from (z0, z1) to (0, 0) as required to complete the proof of the lemma. The rest of the
proof builds w and y.

Applying def. 2.2 with z0 replaced by z1, yields an input v and the solution:

z(s) = Cos(s)z1 +
∫ s

0

Sin(r)Bv(s− r)dr, z(T ) = ż(T ) = 0 .

We define w and y by w(t) =
∫ t

0
v(s)ds and y(t) =

∫ t

0
z(s)ds for t ∈ [0, T ]. The final

condition ẏ(T ) = z(T ) = 0 is immediately satisfied. Since Sin(t) =
∫ t

0
Cos(s)ds:

y(t)− Sin(t)z1 =
∫ t

0

∫ s

0

Sin(r)Bv(s− r)dr ds =
∫ t

0

∫ t

r

Sin(r)Bv(s− r)ds dr

=
∫ t

0

Sin(r)B
∫ t

r

v(s− r)ds dr =
∫ t

0

Sin(r)Bw(t− r) dr .
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The exchange of integrals in the second step is justified since (s, r) 7→ Sin(r)Bv(s−r) is
continuous with values in X−1 (Cos and Sin extend by density to strongly continuous
functions on R of bounded operators on X−1 since they commute with A− β). This
integral formula means that y is the mild solution of ÿ(t) = Ay(t)+Bw(t) with initial
condition (y(0), ẏ(0)) = (0, z1).

3. The results and the method. Our estimate of the cost of fast controls for
(1.1) builds, through the control transmutation method, on the same estimate for
a simple system of type (1.1), i.e. on a segment [0, L] with Dirichlet (N = 0) or
Neumann (N = 1) condition at the left end controlled at the right end through a
Dirichlet condition:

∂tφ = eiθ∂2
sφ on ]0, T [× ]0, L[ , ∂N

s φes=0 = 0, φes=L = u, φet=0 = φ0. (3.1)

With the notations of §2, x = φ, A = ∂2
s on X = L2(0, L) with D(A) = {f ∈

H2(0, L) | ∂N
s f(0) = f(L) = 0}, ‖·‖1 with β = 0 is the homogeneous Sobolev Ḣ2(0, L)

norm, and B on U = C is the dual of C ∈ L(X1;U) defined by Cf = ∂sf(L).
It is well-known that the controllability of this system reduces by spectral analysis

to classical results on nonharmonic Fourier series. The following upper bound for the
cost of fast controls, proved in §4, is an application of a refined result of Avdonin-
Ivanov-Seidman in [30].

Theorem 3.1. There are positive constants α and γ such that, for all N ∈ {0, 1},
L > 0, T ∈

]
0, inf(π, L)2

]
, the controllability cost κL,T of the system (3.1) satisfies:

κL,T 6 γ exp(αL2/T ).
This theorem leads to a definition of the optimal fast control cost rate for (3.1):
Definition 3.2. The rate α∗ is the smallest positive constant such that for all

α > α∗ there exists γ > 0 satisfying the property stated in theorem 3.1.
Remark 3.3. Computing α∗ is an interesting open problem and its solution does

not have to rely on the analysis of series of complex exponentials. The best estimate
so far is α∗ ∈ [1/2, 4(36/37)2] for θ = 0 (cf. [23]).

Our main result is a generalization of theorem 3.1 to the first-order system (1.1)
under some condition on the second-order system (1.2):

Theorem 3.4. If the system (1.2) is null-controllable for times greater than L∗,
then the system (1.1) is null-controllable in any time T . Moreover, the controllability
cost κ1,T of (1.1) satisfies the following upper bound (with α∗ defined above):

lim sup
T→0

T lnκ1,T 6 α∗L
2
∗. (3.2)

Remark 3.5. The upper bound (3.2) means that the norm of an input func-
tion u steering the system (1.1) from an initial state x0 to zero grows at most like
γ‖x0‖ exp(αL2/(2T )) as the control time T tends to zero (for any α∗ and some γ > 0).
The falsity of the converse of the first statement in th. 3.4 is well-known, e.g. in the
more specific setting of §6.

Remark 3.6. As observed in [9], (3.2) yields a logarithmic modulus of continuity
for the minimal time function Tmin : X → [0,+∞) of (1.1); i.e. Tmin(x0), defined
as the infimum of the times T > 0 for which there is a u in L2(R;Y ) such that∫ T

0
‖u(t)‖2dt 6 1, u(t) = 0 for t /∈ [0, T ] and x(T ) = 0, satisfies: for all α > α∗,

there is a c > 0 such that, for all x0 and x′0 in X with ‖x0 − x′0‖ small enough,
|Tmin(x0)− Tmin(x′0)| 6 αL2

∗/ ln(c/‖x0 − x′0‖).
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It is well known that the semigroup T can be expressed as an integral over the
cosine operator function Cos (cf. the second proof of th. 3.14.17 in [3]):

∀x ∈ X, ∀t ∈ C s.t. |arg t| < π/2, T (t)x =
∫

k(t, s) Cos(s)xds , (3.3)

where k(0, s) = δ(s) and k(t, s) = exp(−s2/(4t))/
√

πt for Re t > 0. This equation has
been referred to as the abstract Poisson or Weierstrass formula. Starting with the
observation that k is the fundamental solution of the heat equation on the line, i.e. k
is the solution of ∂tk = ∂2

sk with the Dirac measure at the origin as initial condition,
the transmutation control method consists in replacing the kernel k in (3.3) by some
fundamental controlled solution on the segment [−L,L] controlled at both ends (cf.
(5.8)). The one dimensional th. 3.1 is used to construct this fundamental controlled
solution in §4 and the transmutation is performed in §5.

4. The fundamental controlled solution. This section begins with an outline
of the standard application of [30] to the proof of th. 3.1. Following closely §5 of [23],
the rest of the section outlines the construction of a “fundamental controlled solution”
k in the following sense, where D′(O) denotes the space of distributions on the open set
O endowed with the weak topology, M(O) denotes the subspace of Radon measures
on O, and δ denotes the Dirac measure at the origin:

Definition 4.1. The distribution k ∈ C0([0, T ];M(] − L,L[)) is a fundamental
controlled solution for (4.1) at cost (γ, α) if

∂tk = e−iθ∂2
sk in D′(]0, T [×]− L,L[) , (4.1)

ket=0 = δ and ket=T = 0 , (4.2)

‖k‖2
L2(]0,T [×]−L,L[) 6 γeαL2/T . (4.3)

The operator A defined at the beginning of §3 is negative self-adjoint on the
Hilbert space L2(0, L). It has a sequence {µn}n∈N∗ of negative decreasing eigenvalues
and an orthonormal Hilbert basis {en}n∈N∗ in L2(0, L) of corresponding eigenfunc-
tions. Explicitly:

√
−µn = (n + ν) π/L with ν = 0 for N = 0 (Dirichlet) and ν = 1/2

for N = 1 (Neumann). First note that th. 3.1 can be reduced to the case L = π by the
rescaling (t, s) 7→ (σ2t, σs) with σ = L/π. In terms of the coordinates c = (cn)n∈N∗

of AN/2f0 in the Hilbert basis (en)n∈N∗ where f0 is the initial state of the dual ob-
servability problem, th. 3.1 with L = π reduces by duality to the following window
problem: ∃α > 0, ∃γ > 0, ∀T ∈

]
0, π2

]
,

∀c ∈ l2(N∗),
∑

n∈N∗
|cn|2 6 γeαπ2/T

∫ T

0

|F (t)|2dt where F (t) =
∞∑

n=1

cneexp(iθ)µnt.

Since this results from th. 1 of [30] with λn ∼ ieiθn2 as in §5:2 of [30], the proof of
th. 3.1 is completed.

Now we consider a system governed by the same equation as (3.1) but on the
twofold segment [−L,L] controlled at both ends:

∂tφ− e−iθ∂2
sφ = 0 in ]0, T [×]− L,L[, φes=±L = u±, φet=0 = φ0, (4.4)

with initial state φ0 ∈ L2(0, L), input functions u− and u+ in L2(0, T ). As in propo-
sition 5.1 of [23], applying th. 3.1 with N = 0 to the odd part of φ0 and with N = 1 to
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the even part of φ0 proves that the controllability cost of (4.4) is not greater than the
controllability cost of (3.1) and therefore satisfies the same estimate stated in th. 3.1.
As in proposition 5.2 of [23], we may now combine successively the smoothing effect of
(4.4) with no input (i.e. u+ = u− = 0) and this controllability cost estimate (plugged
into the integral formula expressing φ in terms of φ0 and u± = φes=±L) to obtain:

Proposition 4.2. For all α > α∗, there exists γ > 0 such that for all L > 0 and
T ∈ ]0, inf(π/2, L)2] there is a fundamental controlled solution for (4.4) at cost (γ, α)
(cf. def. 4.1).

5. The transmutation of second-order controls into first-order controls.
In this section we prove th. 3.4.

Let x0 ∈ X be an initial state for (1.1) and let L > L∗. Let z ∈ C0(R+;X) and
v ∈ L2(R+;U) be the solution and input function obtained by applying the exact
controllability of (1.2) in time L to the initial state z0 = x0.

We define z ∈ C0(R;X) and v ∈ L2(R;U) as the extensions of ζ and v by reflection
with respect to s = 0, i.e. z(s) = ζ(s) = z(−s) and v(s) = v(s) = v(−s) for s > 0.
They inherit from (2.4):

z(t) = Cos(t)x0 +
∫ t

0

Sin(t− s)Bv(s)ds. (5.1)

Def. 2.2 of κ2,L implies the following cost estimate for v:∫
‖v(s)‖2ds = 2

∫ L

0

‖v(s)‖2ds 6 2κ2,L‖x0‖2. (5.2)

Since D(A) is dense in X, there is a sequence (xn)n∈N∗ in D(A) converging to x0 in
X. Since X1 is dense in X−1, there is a sequence (fn)n∈N∗ in C1(R;X1) converging
to Bv in L2(R;X−1). For each n ∈ N∗, let zn be defined in C2(R;X) by:

zn(t) = Cos(t)xn +
∫ t

0

Sin(t− s)fn(s)ds,

which converges to z(t) in X for all t due to (5.1). Since zn is a genuine solution of
z̈(t) = Azn(t) + fn(t) (cf. lem. 4.1 of [14]), we have for all ϕ in D(A′):

s 7→ 〈zn(s), ϕ〉 ∈ H2(R) and
d2

ds2
〈zn(s), ϕ〉 = 〈zn(s), A′ϕ〉+ 〈fn(s), ϕ〉.

Hence, 〈zn(t), ϕ〉 = 〈xn, ϕ〉+
∫ t

0

(t−s)〈zn(s), A′ϕ〉+
∫ t

0

(t−s)〈fn(s), ϕ〉. Passing to the

limit, yields 〈z(t), ϕ〉 = 〈x0, ϕ〉+
∫ t

0

(t−s)〈z(s), A′ϕ〉+
∫ t

0

(t−s)〈Bv(s), ϕ〉. Therefore:

s 7→ 〈z(s), ϕ〉 ∈ H2(R) and
d2

ds2
〈z(s), ϕ〉 = 〈z(s), Aϕ〉+ 〈Bv(s), ϕ〉, (5.3)

〈z(s), ϕ〉 = 0 and
d

ds
〈z(s), ϕ〉 = 0 for |s| = L. (5.4)

Let α > α∗ and T ∈]0, inf(1, L2)[. Let γ > 0 and k ∈ C0([0, T ];M(] − L,L[))
be the corresponding constant and fundamental controlled solution given by propo-
sition 4.2. We define k ∈ C0(R+;M(R)) as the extension of k by zero, i.e. k(t, s) =
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k̄(t, s) on [0, T ]×]−L,L[ and k is zero everywhere else. It inherits from k the following
properties

∂tk = eiθ∂2
sk in D′(]0, T [×]− L,L[) , (5.5)

ket=0 = δ and ket=T = 0 , (5.6)

‖k‖2
L2(R+×R) 6 γeαL2/T . (5.7)

The main idea of the proof is to use k as a kernel to transmute z and v into a
solution x and a control u for (1.1). The transmutation formulas:

x(t) =
∫

k(t, s)z(s) ds and ∀t > 0, u(t) =
∫

k(t, s)v(s) ds, (5.8)

define x ∈ C0(R+;X) and u ∈ L2(R+;U) since k ∈ C0(R+;M(R)) ∩ L2(R+;L2(R)),
z ∈ C0(R;X) and v ∈ L2(R;U). The property (5.6) of k implies x(0) = x0 and
x(T ) = 0. Equations (5.3), (5.4) and (5.5) imply, by integrating by parts:

∀ϕ ∈ D(A′), t 7→ 〈x(t), ϕ〉 ∈ H1(R+) and
d

dt
〈x(t), ϕ〉 = 〈x(t), A′ϕ〉+ 〈Bu(t), ϕ〉.

This characterizes x as the unique solution of (1.1) in the weak sense (cf. [5]), which
implies that x and u satisfy (2.4). Since

∫
‖u(t)‖2dt 6

∫∫
|k(t, s)|2ds dt

∫
‖v(s)‖2ds,

(5.7) and (5.2) imply the following cost estimate which completes the proof of th. 3.4:∫ T

0

‖u(t)‖2dt 6 2κ2,LγeαL2/T ‖x0‖2.

6. Geometric bounds on the cost of fast boundary controls for the heat
equation. When the second-order equation (1.2) has a finite propagation speed and
is controllable, the control transmutation method yields geometric upper bounds on
the cost of fast controls for the first-order equation (1.1). From this point of view, this
method is an adaptation of the kernel estimates method of Cheeger-Gromov-Taylor
in [10]. This was illustrated in [23] and [24] on the internal controllability of heat
and Schrödinger equations on Riemannian manifolds which have the wave equation
as corresponding second-order equation. Some similar lower bounds are proved in
these papers (without assuming the controllability of the wave equation) which imply
that the upper bounds are optimal with respect to time dependence. In this section,
we illustrate the control transmutation method on the analogous boundary control
problems for the heat equation.

Let (M, g) be a smooth connected compact n-dimensional Riemannian manifold
with metric g and smooth boundary ∂M . When ∂M 6= ∅, M denotes the interior
and M = M ∪ ∂M . Let ∆ denote the (negative) Laplacian on (M, g) and ∂ν denote
the exterior Neumann vector field on ∂M . The characteristic function of a set S is
denoted by χS .

Let X = L2(M). Let A be defined by Af = ∆f on D(A) = H2(M) ∩ H1
0 (M).

Let C be defined from D(A) to U = L2(∂M) by Cf = ∂νfeΓ where Γ is an open
subset of ∂M , and let B be the dual of C. With this setting, (1.1) with θ = 0 and
(1.2) are the heat and wave equations controlled by the Dirichlet boundary condition
on Γ. In particular (1.2) writes:

∂2
t z −∆z = 0 on Rt ×M, z = χΓv on Rt × ∂M,

z(0) = z0 ∈ L2(M), ż(0) = 0, v ∈ L2
loc(R;L2(∂M)),

(6.1)
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It is well known that B is an admissible observation operator (cf. cor. 3.9 in [6]). To
ensure existence of a null-control for the wave equation we use the geometrical optics
condition of Bardos-Lebeau-Rauch (specifically example 1 after cor. 4.10 in [6]):

There is a positive constant LΓ such that every generalized geodesic of length
greater than LΓ passes through Γ at a non-diffractive point. (6.2)

Generalized geodesics are the rays of geometrical optics (we refer to [21] for a presen-
tation of this condition with a discussion of its significance). We make the additional
assumption that they can be uniquely continued at the boundary ∂M . As in [6], to
ensure this, we may assume either that ∂M has no contacts of infinite order with
its tangents (e.g. ∂M = ∅), or that g and ∂M are real analytic. For instance, we
recall that (6.2) holds when Γ contains a closed hemisphere of a Euclidean ball M of
diameter LΓ/2, or when Γ = ∂M and M is a strictly convex bounded Euclidean set
which does not contain any segment of length LΓ.

Theorem 6.1 ([6]). If (6.2) holds then the wave equation (6.1) is null-controllable
in any time greater than LΓ.

Thanks to this theorem, th. 3.4 implies:
Theorem 6.2. If (6.2) holds then the equation:

∂tx− eiθ∆x = 0 on Rt ×M, x = χΓu on Rt × ∂M,

x(0) = x0 ∈ H−1(M), u ∈ L2
loc(R;L2(∂M)),

is null-controllable in any time T . Moreover, the controllability cost κ1,T (cf. def. 2.2)
satisfies (with α∗ as in def. 3.2): lim sup

T→0
T lnκ1,T 6 α∗L

2
Γ.

Remark 6.3. Note that theorem 3.2 in [6] almost proves the converse of th. 6.1,
thus showing that (6.2) is a sharp condition. Moreover [7, 8] prove that the full
equivalence do hold when χΓ is replaced by a smooth function with the same zero level
set ∂Ω \ Γ (this slight difference of model should not be perceptible in applications).
Hence the control transmutation method does not allow to improve LΓ in th. 6.2.

Remark 6.4. For more results and references on the cost of fast controls for
the heat equation we refer to [15, 23]. It is a known fact that the heat equation is
null-controllable for any non-empty control region Γ, hence the converse to the first
statement of this theorem is not true. When M is a bounded Euclidean set and
∆ has constant coefficients, [15] proves that the lim sup in the second statement is
finite for any interior control region, but does not give an explicit bound. Motivated
by the non-linear heat equation, it considers the heat equation with a time-dependent
potential and describes how the cost depends on the norm of this potential, whereas the
control transmutation method seems to apply only to time-independent potentials (on
which the lim sup above does not depend). As explained in section 2.4 of [23], in the
general case without condition (6.2), one could try to adapt Carleman inequalities with
phases φ to obtain a bound in terms of the following distance function d : d(x, y) =
sup{φ(y)−φ(x)}, for all x and y in M , where the supremum is taken over all Lipschitz
functions φ : M → R with |∇φ| 6 1 almost everywhere (d also has a geometric
characterization in terms of path of least action).

Remark 6.5. This paper does not state explicitly a theorem about transmission
problems for the linear heat equation because it does not address the main open problem
in that context (cf. Open Problem §2.3.4 in [12]). Nonetheless, th. 3.4 provides a proof
of some results which are not found in the literature (n.b. they are considered well-
known by some experts). Firstly, it proves that “Russell’s principle” (cf. [27]) applies
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to transmission problems in any dimension (this was explicitely assumed in §2.3.4 in
[12] and proved in dimension 1 in [16], cf. footnote 3). Secondly, th. 3.4 deduces a
new result on the boundary controllability of the transmission problems for the heat
equation from the boundary controllability of the transmission problem for the wave
equation in Tome 1, chap 6 in [20]. As in remark 6.4, since [12] is based on global
Carleman estimates, it should extend from interior to boundary controls, and would
yield fast controllability at an exponential rate under a less restrictive geometrical
hypothesis than th. 3.4 does, but it would not yield an explicit bound on the rate as
th. 3.4 does.

Acknowledgments. References [4, 16] were pointed out to me by a referee.
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