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Sliding Control of an Electropneumatic Actuator Using an Integral Switching
Surface

Mohamed Bouri and Daniel Thomasset

Abstract—This paper presents a synthesis of a nonlinear
switching control of a rotational electropneumatic servodrive
using a sliding mode approach. A nonlinear sliding mode control
law is applied to the system under consideration. First, the model
of the electropneumatic servodrive is developed. This model is
nonlinear with respect to both the state variables and the control
input. It is transformed to be linear with respect to a new control
variable and a coordinate transformation is then related to
make possible the implementation of the nonlinear discontinuous
controller. Two sliding mode controllers are synthesized with and
without an integral term in the switching surface. The sliding
regimes are particularly pointed out and their stability analyzed
to show that the integral discontinuous control provides best
results especially for a steady-state error cancellation. Practical
considerations are proposed for choosing the control parameters
and finally, the experimental results are presented and discussed.

Index Terms—Electropneumatic actuator, integral sliding sur-
face, nonlinear robust control, sliding mode, tracking.

NOMENCLATURE

Position, speed, acceleration.
Torque constant.
Pressure in the chamber.
Volume constant.
Supply and exhaust pressure.
Ambient temperature.
Volume of the chamber.
Servovalve current.
Polytropic constant.
Load and total inertia.
Perfect gas constant.

Re Reynolds number.
Dry friction torque.
Gravity constant.
Mass position on the paddle.
Boundary layer thickness.
Switching gain and surface parameter.
Mass flow rates provided from the
servovalve to the cylinder chambers.
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Mass flow rates in the half bridges “”
of the servovalve, with or .

Interchamber leakage mass flow rate.
Variable restriction betweenand .

I. INTRODUCTION

SEVERAL industries are concerned with the “fluidpower”
field, namely in applications requiring an accurate control

of mechanical variables (position, velocity, and force), and/or
where strong forces or a large bandwidth are required and in
certain environments when electrical systems are not useful.

In this paper the position tracking of a rotational electrop-
neumatic servodrive is treated. The sliding mode control has
been chosen because of its robustness vis-a-vis modeling errors
and unknown terms. References [1]–[6] can be examined for de-
tailed examples.

To control an electropneumatic actuator, one implicitly re-
quires the measurement or estimation of a minimum of three
variables: position, velocity, and acceleration. These depend on
the type of model under consideration, i.e., nonlinear or linear
tangent models, and also on the type of the applied control. We
have seen [6] that controlled by the nonlinear input–output lin-
earizing control, the acceleration measurement considerably im-
proves the positioning performances and this provides better re-
sults when using a sliding mode technique. However, the ac-
celerometer sensor is not automatically used because of its cost
and its industrial unusefulness. The acceleration information is
therefore replaced by the pressure difference, but this leads to a
steady-state error.

To overcome this anomaly, this paper proposes an integral
sliding mode control law to cancel this static error and is orga-
nized as follows.

First, the nonlinear model of the rotational electropneumatic
servodrive is presented and the state-space equations governing
the motion of this plant are put in a nonlinear affine form. In
order to use a sliding mode technique, a coordinate transforma-
tion is then proposed and the model is rewritten in a nominal
form disturbed by an uncertainty term.

Two sliding mode controllers are synthesized with and
without an integral term in the sliding surface expression and
the experimental results are presented and discussed.

II. THE ELECTROPNEUMATICSYSTEM

The system under consideration (Fig. 1) is a rotational elec-
tropneumatic servodrive controlled by a five-way servovalve
(Schneider PVM 067) whose equivalent technological scheme
is detailed in Fig. 2.

1063–6536/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 2, MARCH 2001 369

Fig. 1. The electropneumatic system.

Fig. 2. Technological scheme of the servovalve.

Fig. 3. Wheatstone bridge representation.

A. The Nonlinear Model

To model electropneumatic or electrohydraulic systems, the
classical Wheatstone bridge representation (Fig. 3) is generally
used.

As shown in Fig. 3, the electropneumatic system is composed
of a servovalve and a rotational actuator. The electrical and
mechanical parts of the servovalve are generally represented
[7] by a third-order transfer function. Nevertheless in our case
the bandwidth of the Schneider servovalve and the actuator

are respectively about 160 Hz and 1.6 Hz and Bouhal [8] has
shown, using the theory of multitime-scale systems, that the
faster dynamics may be neglected. Therefore, the servovalve
model was reduced to a static one described by two relations

and .
To obtain the actuator model two fundamental laws are used:

the pressure dynamics in a chamber of variable volume and the
mechanical equation.

1) The pressure evolution law in the actuator chamber is ob-
tained by assuming the following hypotheses [9], [10].

• Air is a perfect gas and its kinetic energy is negli-
gible.

• The pressure and the temperature in each chamber
are homogeneous.

• The fluid kinetic energy within the chamber is neg-
ligible.

• The pressure evolution is polytropic.
The mass balance equation gives the pressure dynamics

for the two chambers “” and “ ” ( “ ” or “ ”)

(1)

with

and

2 The principle of classic mechanics applied to the total
inertia gives the following expression (viscous friction is
neglected):

(2)

Assuming that the temperature variation is negligible with
respect to the mean value and equal to the supply temperature
(i.e., ), the electropneumatic system model is
easily obtained by combining all the previous relations

(3)

where and with
and are the piping volumes of the chambers for the zero
central position.
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(a) (b)

Fig. 4. (a) Real and (b) idealized mass flow-rates.

B. Transformation to a Nonlinear Affine Model

The main difficulty in the model (3) is the knowledge of
the mass flow rate expressions and . Two exper-
imental methods are generally used: the first one uses a local
characterization of the servovalve orifice openings [11], [12],
the second proposes a global characterization [13]. Neverthe-
less, these two methods do not lead directly to the mathematical
expressions of the mass flow rates, but lead to numerical tables
usually used in simulation but not in a control model.

For the Schneider servovalve, we use the solution proposed
by Richard [14]. This procedure consists of introducing a new
control variable and the servovalve input current is obtained
by inverting the bijective characteristic . This solution is
summarized as follows.

• First, consider the half Wheatstone bridge “” of the ser-
vovalve (Fig. 3). For any value of the control current,
the real mass flow-rates and [Fig. 4(a)]
are then idealized [Fig. 4(b)] assuming the leakage mass
flow-rate independent of the pressure.

The mass flow-rate variable , independent of the
pressure , is then introduced

if
if

(4)

• On the other hand, in the half part “” of the Wheatstone
bridge (Fig. 3), we have

(5)

Using (4) the mass flow-rate is rewritten as follows:

if

if
(6)

The same decomposition is carried out for the half bridge.”
Assuming the servovalve symmetry, is expressed as

if

if
(7)

Finally, assuming the supply pressure and the exhaust
pressure constants, we express the mass flow-rate and

as follows:

sign

sign

(8)

with

sign

if

if

sign

if

if
(9)

and

(10)

( denotes the used value of the current in the measurements).
The experimental values of thefunctions and their polyno-

mial fits are shown in Fig. 5.
The measured leakages in the servovalve and between the

chambers () and ( ) are given, respectively, by the curves in
Fig. 6 (polynomial fits are computed)

The nonlinear affine model is then given by

(11)
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Fig. 5. Experimental mass flow-rate functions and polynomials.

Fig. 6. Mass flow rate leakages.

and

sign

sign

is the state vector and the mass flow rate
control variable is replaced by “ ” in order to use clas-
sical notations.

III. CONTROL SYNTHESIS

A. Coordinate Transformation

Let us now consider the nonlinear affine model (11) of the
electropneumatic system. The output has a relative
degree . The following change of coordinates is carried
out:

(12)

It is easy to check that it is actually a global diffeomorphism
due to the property of the nonsingularity of its Jacobean matrix

.
In these new coordinates , the system

dynamics may be rewritten in the following form:

(13)

(14)

and are expressed in thecoordinates as

sign

sign
(15)

and

(16)

In practice, this form is very useful for the following reasons.

• It contains only accessible states (position, velocity, and
the two chamber pressures).

• The terms and contain only
known terms.

• All the unknown terms (dry friction, gravity torque (be-
cause may vary), servovalve and interchamber leak-
ages) are grouped in uncertainty terms and ( is
an unmatched uncertainty representing the difference be-
tween the real acceleration and the state variable).

B. Implementation

Let:

• , , and be the desired position, ve-
locity, acceleration and jerk trajectories;

• be the state error vector
containing the position, velocity, and acceleration errors,
respectively

1) Sliding Mode Control (SMC) Implementation:Let be
the sliding surface (chosen in a Slotine form [16])

(17)

Then, the classic SMC [15], [16] law expressed in theco-
ordinates is

sign
(18)

The switching gain must obey the relation (19) in order to
maintain the sliding mode condition . and
are the bounds of and

(19)

The singularity of this control law happens when
). This occurs when the pressures in the two chambers

“ ” and “ ” are equal to the source and exhaust pressures, re-
spectively. This situation is rare in practice. However, fixing the
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value of the denominator when it is close to zero would
alleviate this.

It can be easily shown that this control lawis implicit due to
the dependence of the denominator on the sign of. However,
the experimental functions are positive except for the singular
points defined above. is then always positive and
is independent of . Consequently the sign of the controlde-
pends only on its numerator value.

The next step is the problem of the boundedness of the
residual dynamics (14) in the sliding regime. The mathematical
study of this nonlinear dynamics is difficult because of the
presence of uncertainties in the nonlinear differential equation
defining . Nevertheless in static phase (i.e., actuator stopped,

and even if there is a steady-state
error), we have proven [19] the existence, the unicity and the
asymptotic stability of the equilibrium point of this system
dynamics. Furthermore, in all cases, experimental results show
that the two pressures are bounded and well stabilized in the
final regime.

a) Sliding mode analysis:The sliding mode is given
when by the following equation:

(20)

This time varying dynamics does not present an equilibrium
state. Its total stability [17] can easily be checked. Nevertheless
this result only shows that for a bounded disturbancethe per-
turbed system is ultimately bounded.

In the Appendix, we prove that the error dynamics is bounded
by the value . To do a bit more then this, let
us analyze what happens when the permanent phase of tracking
is reached, i.e., when moving close to the ball of radius .
From (16), we have

When is close to the ball defined above, may be
approximated by

Using physical considerations, i.e., that

We can once more transform the system to the following rep-
resentation:

Which can be considered as a linear system with a natural
frequency , a gain and a sinusoidal input with an offset.

Hence, because (from experimental values), the
position error tracks exactly the time varying function

. Furthermore, when in the static phases,

i.e., (starting and breaking phases), the output of (21)
surely leads to the static error ( corresponds to the
static value of ).

Practically, as underlined above, the great advantage of the
proposed control is its state feedback that does not need an ac-
celerometer sensor. However the position error when the actu-
ator stops is nonzero.

2) Sliding Mode Controller with an Integral surface (SMCI)
Implementation: In order to cancel the static error, an integral
term is added to the surface expression. Letbe this new sur-
face also chosen in a Slotine form

(21)

The corresponding SMCI is synthesized as (18) and is given
by

sign

(22)

The surface attractivity is maintained by choosingsuch
that

(23)

a) Sliding mode analysis:When in sliding mode the
closed-loop system dynamics obey the following equation:

with

(24)

Like in the previous section, with the same calculus and the
same physical assumptions, we easily prove thatwill track
the time varying function and thus, the
position error tracks .

Consequently, even in tracking, the error obtained with
the SMCI is less than the one obtained with the SMC, i.e.,

.
In practical terms, this control law adds two great advantages:

its state feedback works without an accelerometer sensor and
there is no position error when the actuator stops.

IV. EXPERIMENTAL RESULTS

The experimental tests were carried out by measuring the po-
sition and the two pressures and . The velocity has been
obtained by a numerical derivation on two sampling times.

To reduce chattering in control the discontinuous signum
function is replaced by the saturation function that is linear
within a boundary layer

sat
sign if

if
(25)

1) Remark: The same procedure can be followed to analyze
the nonideal sliding modes (SMC and SMCI when using the
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(a) (b)

(c) (d)

Fig. 7. SMC results near the central position.

saturation function). This is carried out by replacing the input
disturbance term in the ideal case equations (20) and (24) by

( is the bound of assured by the nonideal
sliding mode controller). Indeed, in [20] it has been proven that
after a sufficient time, we can have the following boundedness:

and

Thus, the sliding mode controllers (18) and (22) were imple-
mented on a PC computer with a sampling time fixed to
10 ms relative to the computing time, closed-loop response time
and the velocity resolution.

To implement these control laws, three parameters are
needed: the switching gain , the surface coefficient and the
boundary layer thickness.

is chosen [relations (19) or (23)] relative to the upper
bound of (obtained by upper-bounding the measured
leakage mass flow rates) and is experimentally adjusted to
obtain a convenient dynamics.

or

Therefore, because it fixes the closed loop, we have computed
taking into account the natural frequency of the tangent lin-

earized model for the central position. This pulsation is about
10 rd/s and then is chosen between 15 rd/s and 25 rd/s.

The sliding control is mainly a switching control and it can
switch a lot due to the quantization errors. To alleviate this, let

, and , be the quantization errors of position, velocity,
and acceleration, respectively. We define a quantitycorre-
sponding to the value of the surface(or ) computed from
these quantization errors.

For a 12–bit ADC and for a wide variation135 to 135 ,
the position resolution is 0.067 1,169 10 rd/lsb.

Hence the velocity resolution for our derivation method is
3.35 /s/lsb 0.058 47 rd/s/lsb. The pressure resolution is 1.22
10 Pa/lsb and then 0,04 rd/s/lsb. Finally, for 25
we obtain

(26)

2) Remark: the preponderant term in computing is the
term in . So, the velocity quantization error is the term the
most responsible for the presence of the noise quantization in
the control behavior.

The boundary layer is then computed as a sum of and a
supplementary value fixed experimentally: .

For all the tests and for both controllers SMC and SMCI,,
and were imposed to: , , and .
The reference trajectories of position, velocity, acceleration,

and jerk are obtained by means of a third-order transfer function
( is a step position of a given

amplitude). The following graphs are referenced in degrees for
easier reading.

Let us now present the experimental results. Fig. 7(a) shows
the tracking curve obtained by the SMC controller (18) when
applying an amplitude of 50around the central position. The
dynamics is acceptable and one can see the predicted static error
[Fig. 7(b)].

The control does not have much chattering [Fig. 7(d)] and the
pressures and are stabilized well in the static phases [Fig.
7(c)].

More problems appear when there is tracking at the extremity
of the actuator because of the high nonlinearity of the system.
The obtained dynamics is bad and the static error is quite large
[Fig. 8(a) and (b)].

The sliding controller with an integral surface provides better
results in all cases. With the same control parameters, and

, the tracking performances are satisfactory near the central po-
sition [Fig. 9(a)] or at the extremity [Fig. 10(a)]. As one can see
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(a) (b)

Fig. 8. SMC results at the extremity.

(a) (b)

(c) (d)

Fig. 9. SMCI results near the central position.

(a) (b)

Fig. 10. SMCI results at the extremity.

the cost of this improvement is a small increase in chattering in
the control current [Fig. 9(d)] but without noteworthy unplea-
sance for the servovalve.

V. CONCLUSION

As expected the sliding mode controller with an integral sur-
face gives more useful results at all the operating points (cen-
tral position and extremity). The static error has been decreased
enough relative to the other controller and the dynamics is sat-

isfactory especially at the extremity of the servodrive. It is im-
portant to notice the economic impact of this result with respect
to the use of an accelerometer. It has been proven theoretically
and experimentally that the information concerning the pressure
difference may be conveniently substituted for the real acceler-
ation.

However, the sliding mode control is not a miracle: one must
always carry out a compromise between chattering and the de-
sired performances. This compromise seemed to be held in our
case.
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APPENDIX

Equation (20) may be rewritten as follows:

We know that , ,
with .

Let us define a function such that .
Then

One first uses the right inequality:
By integrating this inequality we have.

with

By integrating this inequality, we have

with

By multiplying this equation by , we obtain

A first-order polynomial that multiply a decreasing exponen-
tial function is bounded .

Then, .
By considering the left inequality of () the same method may

be used to prove that .
We thus prove that the position error (20) is bounded and the

bounds exponentially tends (with a time constant 1/) to

The same procedure can be followed to prove the bounded-
ness of the solution of (24) and one may find that

, are two second-order polynomials.
Which exponentially tends to:
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