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Abstract

In this paper, we give sufficient conditions to establish central limit theorems for boundary
estimates of Poisson point processes. The considered estimates are obtained by smoothing
some bias corrected extreme values of the point process. We show how the smoothing leads
Gaussian asymptotic distributions and therefore pointwise confidence intervals. Some new

unidimensional and multidimensional examples are provided.
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1 Introduction

Many proposals are given in the literature for estimating a set S given a finite random set N of
points drawn from the interior. This problem of support estimation arises in classification (HARDY
& RassoN (1982)), clustering problems (HarriGAN (1975)), discriminant analysis (Baurays &
RassoN (1985)), and outliers detection (DEVROYE & WISE (1980)). Applications are also found
in image analysis. For instance, the segmentation problem can be considered under the support
estimation point of view, where the support is a connex bounded set in R?. We also point out some
applications in econometrics (e.g. DEPRINS, et al (1984)). In such cases, the unknown support
can be written

S={(x,y):z€F;0< y < f(a)}, (1)
where f is an unknown function and F an arbitrary set. The set S is often called a boundary
fragment, see KorosTELEV & TsyBakov (1993), Chapter 3. Then, the problem reduces to
estimating f, sometimes called the production frontier (see for instance HARDLE et al (1995a)).
The data consist of pair (X,Y) where X represents the input, possibly multidimensional (labor,
energy or capital), used to produce an output Y in a given firm. In such a framework, the value
f(z) can be interpreted as the maximum level of output which is attainable for the level of input .
KOROSTELEV et al (1995) suppose f to be increasing and concave, from economical considerations,
which suggests an adapted estimator, called the DEA (Data Envelopment Analysis) estimator. Its

asymptotic distribution is established by G1IBELS et al (1999).

Here, N is a Poisson point process, with observed points belonging to a subset S defined as in (1)
where f is an unknown function which needs not to be monotone. An early paper was written by
GEFFROY (1964) for independent identically distributed observations from a density. The proposed
estimator is a kind of histogram based on the extreme values of the sample. This work was extended

in two main directions.

(a) On the one hand, piecewise polynomials were introduced and their optimality in an asymp-
totic minimax sense is proved under weak assumptions on the rate of decrease f of the

density towards 0 and on the number ¢ of continuous derivatives of f by KorRosTELEV &



TsyBaKov (1993) and by HARDLE et al (1995b). The asymptotic distribution is established
by HALL et al (1998). Extreme values methods are proposed by HALL et al (1997) and by

GUBELs & PENG (1999) to estimate the parameter 5.

(b) On the other hand, different propositions for smoothing Geffroy’s estimate were made. Gi-
RARD & JacoB (2001, 2003a, 2003b) introduced estimates based on kernel regressions and on
projection methods. In the same spirit, GARDES (2002) proposed a Faber-Shauder estimate.

In each case, the consistency and the limit distribution of the estimator are established.

Finally, the work of MaMMEN & TsyBakov (1995) offers a general framework for comparing
the estimates of type (a) or (b). The optimal rates of convergence are derived for estimates
of boundaries which have a smooth parametrisation. The existence of estimates reaching these
optimal rates of convergence is proved by the minimization of contrast criteria over classes of

functions.

Here, we introduce new estimates of type (b). The considered estimates are obtained by smoothing
the bias corrected extreme values of the Poisson process (see MENNETEAU (2003a) for related work

in the iid setting).

This approach offers several advantages. First, the bias correction allows to overcome the
classical limitation due to the fact that the data lie below the boundary. Second, the smoothing
permits to obtain Gaussian asymptotic distributions. Therefore, it is straightforward to obtain
pointwise confidence intervals for f(x) all the more so as our estimates benefit from explicit forms
and are easy to compute. Finally, let us note that our estimates offer new features compared to
those quoted in (b): 1) They are not dedicated to unidimensional boundary estimation problems
since there is no restriction on the set E in (1), ii) the bias correction is different and thus, iii)
the intensity measure of the point process can be more general, iv) the smoothing is achieved with
more general weight functions allowing v) better speeds of convergence than the previous estimates

quoted in (b).



2 The boundary estimate

Let (E,&,v) be a probability space and f : (E,&) — (RY, B(R™T)) a measurable function, where
B (R) is the Borel o-algebra on R. Consider S = {(z,y) € F x R,0<y < f(z)} and the sequence

of Poisson point processes

with intensity measure

ne(v @ A) 1g, (2)

where ¢ > 0, and A is the Lebesgue measure on RT. Let {(X, i, Y i), 1 <i < N,(S)} be the set
of points associated to the point process. Our aim is then to estimate S via an estimation of f.
Let k, 1 oo and denote by {I,, : 1 <r < k,} a measurable partition of E. For all 1 < r < ky,
note vy, , = v(I, ),

Dn,r = {(m,y) SIS In,ra 0<y< f(m)}

the cell of S built on 7, » and N, , = Ny (D). We introduce the extreme values

Y, =max{Y,;: (Xn:,Yni) € Dpn,},

n,r

if Np» # 0and Y.’ = 0 otherwise. In the following, the convention 0 x co = 0 is adopted. For

z € E, our estimator of f(z) is

k
f r) = E . T Y , 3
( ) 11/ ) ) ( ) ( N177-> 2, ( )

where &k, ,» : £ — R is a weighting function determining the nature of the smoothing introduced in
the estimate. In the next section, some general conditions are imposed on k, , and examples are
provided in Section 5. It is well-known that Y,7, is an estimator of the maximumof f on I, , with
negative bias. The use of the random variable (1 + N,;}_)Y* allows to reduce this bias. This bias

n,r

correction is motivated by the remark that, conditionally on N, ,, Y7, has approximatively the
same distribution as the maximum of N, , independent random variables uniformly distributed on

[0,min{f(z) : « € I, r}] (see Lemma 1 ii) below). Therefore, ﬁl appears as a linear combination

of extreme value estimates of sampled values of f. The asymptotic properties of f/';l are established



in Section 3, and proved in Section 4. Illustrations are presented in Section 5 with general kernel

estimates including Parzen-Rosenblatt and Dirichlet kernels.

3 Main results

Define v, = min{v,, ,, 1 <r <k,} and

ke 1/2
kn(x) = (Z KZ7T(z)) , x EF.
r=1

Let m = sup{a > 0:v({f <a}) =0} and M = inf{a > 0: v ({f > a}) = 0} be the v-essential

infimum and supremum of f on F. Similarly, for all 1 <r < k,, let
my,r =supla>0:v({f <a}NlI,,) =0},

Mn},- = inf{a >0:v ({f > OZ} N In,r) = 0}
and
fn,r = Vrzl / Jdv
T,

be respectively the v-essential infimum, the v-essential supremum and the mean value of f on I, ,

and define the v-essential oscillation of f on I, , by
Ap =max{Mp, —mp,, 1 <1<k}

Let us highlight that, in most applications (see Section 5), F is a subset of R9 v is absolutely
continuous with respect to Lebesgue measure and f is continuous. Hence, all essential infima and
essential suprema considered below reduce to the classical minima and maxima.

Finally, set wy, »(x) = kn,r (¢) /kn(x). We consider the following series of assumptions:

(H.1) ky 1 00 and nv, — 00 as n — oo.

(H2) 0<m <M < +oo and

0p = max vn,(Mp, —mp,)=o0(l/n) asn — oo.
1<r<ky,

There exists F C E such that:



(H.3) For each (z1,...,xp) C F, there exists a covariance matrix X, . z,) = [0(2i, j)]1<i j<p in

IR? such that for all 1 < i, j < p,
kn
an,r(xi)wnyr(xj) — (r(:ri,a:j) as n — 0.
r=1

(H.4) For all z € F,

max |wn ,(z)] = 0asn — oco.
1<r<ky, '

(H.5) For all z € F,

krn
S v tin s (@) for — f(2)
r=1

(H.6) For all z € F,

En
Z |wn »(x)| max ((nén)Q , MWy eXp (—menvy,) ,An) — 0asn — oo.
r=1

Before proceeding, let us comment on the assumptions. (H.1)-(H.4) are devoted to the control
of the centered estimator ]/”;L (z) — E(ﬁl (2)). Assumption (H.1) imposes that the mean number
of points in each D, . goes to infinity. (H.2) requires the unknown function f to be bounded
away from 0. It also imposes that the mean number of points in D, , above m, , converges to
0. Note that (H.1) and (H.2) force the v-essential oscillation of f on I, to converge uniformly
to 0: Ap — 0 as n — oo. (H.3) is devoted to the multivariate aspects of the limit theorems. (H.4)
imposes to the weight functions &, ,(z) in the linear combination (3) to be approximatively of
the same order. This is a natural condition to obtain an asymptotic Gaussian behavior. These
assumptions are easy to verify in practice since they involve either f(z) or &, r(2) without mixing
these two quantities. Assumptions (H.5) and (H.6) are devoted to the control of the bias term
E(ﬁ (2)) — f(x). They prevent it to be too important with respect to the variance of the estimate
(which will reveal to be of order &, (xz)/n). Consequently, these two assumptions involve both the
unknown function f(z) and the weight functions &, .(z). Finally, (H.6) can be looked at as a

stronger version of (H.2).

Our first result states the multivariate central limit theorem for ﬁl(a:)



Theorem 1 Under assumptions (H.1)-(H.6), and for all (z1,...,2p) C F,

{2 (fae) = £ ) 1T Sph 3 N (0500 )

kin (2;)
where ¢ is defined in (2), = denotes the convergence in distribution and N (O,E(I1 e )) s the
D yo-Tp

centered Gaussian distribution in RP, with covariance matriz Yz, . z,)-
In practice, ¢ is not known and has to be estimated. In this aim, we introduce ¢, = N, (S)/(nd,),

kn
an — Zyn,r (1 + > Yr:,r
r=1

is an estimator of @ = fE fdv. We then have the following corollary:

where

1
Nn,r

Corollary 1 Theorem 1 holds when c is replaced by ¢,.

For all # € F, this leads to an explicit asymptotic yth confidence interval for f(z):

E‘: Vs (nn,r(m) —z, ;Z%) <1+ Ni) Y:,r,gm,r <Kn,,«(m) + 2 ;f(g) <1+ Ni) er,r] |

where z, is the (y + 1)/2th quantile of the N (0, 1) distribution. Note that the computation of this

interval does not require a bootstrap procedure as for instance in HaLL et al (1998).

Remark. In the case where the measure v is unknown, it is natural to introduce the boundary

estimate:
kn

}n(x) = ;n,rﬁn,r(f) <1+

r=1

1
Yy 4
Nn,T) e ( )

] . . . . . . .
where vy, , is an estimator of v, ,. If no prior information is available on v, one can use the

following non-parametric estimate:

; Nn,r
T neyr, (14 Nap)
leading to
o kn
n = n,r n,r}
Ful) = 3 () 2
r=1

which has been first introduced by JacoB & SuqQuUET (1995) with a particular choice of the

weighting function &, , and when v is the Lebesgue measure. Let us note that Theorem 1 does



o

not hold for f, since it converges slower than fn, see JACOB & SUQUET (1995), Theorem 7. If
v is assumed to belong to a parametric family, another versions of (4) can be used, leading to

semi-parametric estimates of f.

4 Proofs of the main results

The proofs are built as follows. First, we establish a multivariate central limit theorem for the

finite dimensional projection of the centered process

(see Proposition 1 below). To this aim, by the general framework of the appendix (Theorem 3) it

1s sufficient to control the centered moments of

1 1
Zr =11+ nevy Yo .
Nn,r ’ Nn,r ' ’

This is achieved in Lemma 2. In a second time, we establish that the bias term

gn,r = (1 +

vanishes when n 1 oo (see Proposition 2). Finally, we prove in Lemma 3 that ¢ can be replaced
by ¢, in the multivariate central limit theorem. Before that, we introduce some new notations
and definitions needed for our proofs. For all 1 < r < kj, cach cell Dy, can be splitted as

Dy r= ﬁnw U D;,r U D} where

n,r

. ﬁn r= {(:c,y) € In, x [Oamn,r]; f(l‘) < mnw}a

)

o Dy, ={(2,9) € Duy, 0<y <t} = (I x [0,m0,]) \Dhyr,

M Djz_,r ={(z,y):z € Iy, My, <y< f()}.
Moreover, for all 1 < r < k,, set

* An,r = NCVnp rMp r,



Hn,r = NCVp rfn 7
) ) )

Ni,=Na(D;,), Nf, =N, (D},),

)

o 7, =ncvy max{Vy ;i (Xyi,Yai) € Dy}, if N7 #0, and 7, = 0 otherwise,

n

ZY, =nev, ,max{Y, ;: (X, YVni) € D,‘.';T}, if N,‘l':,, #0, and Z;-f,r = 0 otherwise,

n,

- 1 _
&= (1432 %,

Some technical results are collected in Lemma 1. The second of them is the key tool for proving

the following ones. Tt states that, conditionally on N ., 77 has the same distribution as the

independent random variables uniformly distributed on [0, A, ,]. This motivates

maximum of N7,
bl

the bias correction in (3).

Lemma 1 Under assumptions (H.1) and (H.2) we have

N
it) For all 1 <r < kyn, and any t € [0, A, »], IP’(Z,;T <t| N,;T) = (Azr) T

itr) For all 1 <r <k, and anyt € [0,A, ], P (Z;,r <t) =exp(t — M)
w) For all 1 < r < ky, E(Z,.:T) =Xy — (1 _ B—An,r) )

v) For all 1 < v <y, V(Z7,) =1=2X, e7 nr — e 2Anr,

vi} For all 1 < r < ky, E(%) =1 —¢e Pnr (T4 X))

n,r

vit) For all £> 1 and 1 <r < ky, E((%y) < L.

n,r

zZ-
viii) 122}; A% (#) = o(1).

ir) For all ¢ >1 and 1< r < kn, E(|Zn",, —E(Z;},)V) <140

z) For all £ > 1, 12%}15,,E(|€”’T — &, = 0(ndy).

i) 12‘%}271 |E(Z,:,,.) — Hnyr+ 1| =0 (max (exp (—mnevy,) ; (”5n)2)) .

Proof. i) is straightforward.

ii) First, note that, since (v @ X)(Dy ») = 0, then for all A € B(R1),

Nu (Dy O (Inr x A)) = N (In x ([0, mn ;] N A)) as.



which is a Poisson random variable with mean ncvy, »A ([0, my -] N A) . Second, set ¢t € [0, An ],
and define ¢, » = t/(ncvy ,r). Then, for all ¢ > 1,

P(Zy,<t|N,,=q)
P (Nn (D5, 0 (I x [0,

q) P (No (D O (Inr X (tnr, +00))) = 0)

) =
P (No (Drr) = q)

- (;)q (5)

Noticing that (5) is obvious when ¢ = 0 gives the result.

iii)~v) are deduced from ii) by easy calculations.

vi) It follows from ii) that

Inr Lot Yz, o AR
E<—_> =F @E(zﬁr | N7 | = A E g - S Vi
Nnr Npor ) ) ; Nor+1 = (¢ + 1)

=1—e (14 Ay).

vii) We have,

()= s ) (i)

since for all £ and ¢, (¢ + £ — 1)! < £lg*~1q!,

viii) By (6) with £ =2,

7=\ 2 © 1\ a2
()
N ‘ q) (q+2)!

Now, since,

>
no| T

max e [ 1+ N\, , +
1<r<k, ’

/\2
—’T)< max e_>‘<1+/\+—>:0(1),
— A>mncv, 2

and for all @ > 1,

[ 1 )‘q+2 Q q+2 1 0 ,\q+2 N
1<r<k (q+2) 1<r<k Z q+2 o alg}%k Z(q-i'Q) |
<o(l)+ !
o 2y
- Q

10



1t follows that

7= \2
22, E((N,;’,) ) e "
Collecting (7) and vi) gives the result.
ix) Note that
‘ Feo
E(|Z,;T ~E(Z;,)] ) = 12/ e (2, , —E(Z;,)| > t)dt.
0
Moreover, by iii) and iv),
P(|z:, —E(Z:,)| > 1) =P (2, > E(Z;,) +1) + P (Z7, <E(Z,) - 1)
= [1 — €Xp (t —Anrt+ E(Z;,r))] 1[0,)\,1,,‘—1[1(2;),)](75)
+ exp (_t —Anr +E (Z;,r)) 1[07m(z,;,)] (t)
< 1o,17(t) +exp (e_)"” — 1) et
Hence,
1 + o0
E<|Z;’,. -E(Z,,)| ) < £/ 71t + exp (e — 1)[/ = te~tdt
0 0
<1+ exp (e_)‘"’r — 1) £,
x) Since 7Z; , = (Z;fy, - Z;V,,) 1{Nﬁ[r>0} + 75y We get
1 1 1
bnr =&y = (1+ ¥ ) (Z8r = Zar) Ling, >0} + Znr ( = )
1
_ (1+ Nﬂ) (7 =) Lt oy + <1+ ) (7)) Lt 0}
1 ! E(Z, Z )1 Zy
+ + Nn,r ( ( n,r) B n,r) {N’tr>0} + Nn,r B Nn—,r
= Ynrl Y2+ Y3+ Vo4
Hence, by the triangle inequality,
, 4 1/¢
2. (e =6 0) " < 30 B (nrat) ®
First,
1/¢
1<rr:€<n; E (|’yn7,«71| ) < anlgnri);nun r(Mpp—mp )P (N;:T > 0) =o0(ndy,). (9)
Second, by iv):
1/¢
1217}2?; E (|7n,r,2| ) < 2122);"@’ (N;:T > 0) =0 (nd,). (10)

11



Third, the independence of N¥ and Zy  yields with ix):

n,r

max E(| |l)1/Z < 2(1—|—£T)1/l max P (N} > 0) =0 (nd,) (11)
1<r<ky, T3 = ’ 1<r<ky, nr - no

Finally, since |y, 74| < An - (Ny, + 1)_11{N+ >0} and taking into account that

00 q+£
E ((N;T + 1)“) =t (g + f)! A
’ T (g + 1) gt (g4 0)

n,r

reTAmr <IN (12)

(where we used the fact that for all £ and ¢, (¢+ €)! < (¢ + l)l Llgh), we get

R \ ~ _n1/e N
ax Bl ) < max h B (O 407 TR >0)
ni/e + —
< ()" max B (N, >0) =0 (nd,). (13)

The result is a consequence of (8) — (13).

xi) Note that

E(Y:)=[ PV, >u)du

Mo, r M.,
(1 =P (No (Do p O (Inr % [u, My 1)) du+/ P (Y, > u)du

Man,r Mn,r
= / (1 —exp (—nevp r fo r + ncvy pu)) du +/ P (Y;,r > u) du
0

Man,r

— mn,r - (ncyn,r)_l eXP (_ncyn,r (fn,r - mn,r)) + (ncyn,r)_l eXP (_ncyn,rfn,r_)

M.,
-|-/ P (Y;,r > u) du.

My,

Hence,
*
o, [B(Z2) = onr 1]
< max |ncvnr (for — Mnr) — 1L+ exp (=ncvnr (far — mar))|
1<r<kn
+ exp (—ncvpm) + ne max v, P (Y,:‘T > m,.w) (Mp,r —my r)
1<r<kn ’
—t 2

< Ogl%%fan (e +t 1) + exp (—nevp,m) + O ((nén) )

=0 (max (exp (—mnev,,) ; (nén)2)) .
| ]

In the next lemma we give an uniform upper bound on the centered moments of (¢, ,) and an

exact uniform control of the variances and expectations.

12



Lemma 2 Under assumptions (H.1) and (H.2) we have

9 limaup ety may (e — E(en)f) <1

ii) 1251)( [V (nr) =1 =0(1).

iii) | max [E(&nr — pinr)| =0 (max ((nén)2 , Ny, exXp (—menvy,) ,An)) )

Proof. i) It is easy to see that

max E(| - _E(z,;r)ﬁ),

max E(|En r —E(én ,«)|l) < 3 max 1srskn
1<r<kn ' - , z- ¢ . ’
2 max E ‘—’i’r , 2° max E(|£njr—éjgr| )

1<r<k, )

1<r<k, "

and the result follows from Lemma 1 vii), ix) and x).

ii) Introduce for the sake of simplicity v, » =&u» — 75, = (§nr — &5 ) + (75 /Ny, ). This yields
v ( nﬂ‘) =V (Z;,r) + 2Cov (Zr:,r’ ’Yn,r) +V (711,7’)

and we thus have,

1/2

max |V (,r) —1] < max |V(Z;T)—1|+

1<r<kn 1<r<kn

(max Vims) +2) max V() V(Z,)

Lemma 1 v) shows that

max |V n T) — 1| = max |2\, ,e " 4 e Py
1<r<k, 1<r<k, '

:0(]).

Besides,

Y 2 Y A E ~7) =o(1
B,V Onr) S 2, V(20 ) 2, Bl = 65,1 = o)

n,r

by Lemma 1 viii) and x) in the particular case where £ = 2.

iii) First, by the triangle inequality and Lemma 1 (vi),

A
o [B(5) 1] < oy [P (R - 1) vt
E<<Nn- 1) 1t )|
Zt, E(N r)
< max B Lint, >0}
Nn,r _E(Nn,r)

(14)

13



Now, since E(Np ) = pin,r, we get using Lemma 1 (ii) and (12)

Z+ —E Nnr -
E(("—()> 1{N¢,>o})‘ < ned, max E((N,;,, + 1) 1) P (N}, >0)

max
1<r<ky, Ny r 1<r<ky,
=0 ((nctfn)Z) . (15)
Moreover,
Noy — E(Np ) Nt —E(NF,)
E — 21 < K _— |1
12%’;n << Ny ) {N,tr>0}>‘ > 15”32”12,1 (( Nor {nE.>0}
N, —E(N,,)
oo P\ T, vy )| (9)

and since for all large n, max E(N,‘L*:T) < ned, < 1, we get eventually, using (12) again,

n

Nt —E(NF) Nt —E(NF,)
EV\— 7~ [ Yvtsoy )| = 2 B — ) w0

< F Nrj-r_E(Nr-L‘-r) 1
< pa P TS Yo

< moy 5((v, + )7 B ()

max
1<r<kn

Finally, since, for all » < k,,

N’;"_E(Nn_,r)

E Nnr 1{N'Tr>0}
Nir —E(Na,) Ny, —E(N7,)|

< E n,r n,r ]PJ N;T _ 1 + E n,r n.r ]PJ N:r —

= < Npr+1 ) ( ; ) ; ( Nor +J ( : J)
N,L_,.—E(Nn_r) |Nn_r E(Nn—r)

SF —_— p(N:—T ])+E L p(NﬁI-TZQ)

Nn,r+1 ’ Nn,r+1 )

Nn_,r_E(Nn_r) + _ _ _9 1/2 +

< E( i )P’(Nnr—l)-i-(V(Nn,r)E((NnT—l-l) )) P (N}, > 9)
Ny —E(N;,) . N

14



with

e Mo o, =M o
:Anr (q_])—'F ’ _Z—'E ’
q=1 7 q=1 7

=A7L (A — T e™Pmr) = (1= Pnr)

= ATt (LA, (19)

and

we get collecting (14) — (20) that

5 (52 ) ~1] =0 (max (106" 8,))

)

max
1<r<kn,

As a conclusion, Lemma 1 (xi) yields:

p— * p—
12%}];} |E(€n,r ,un,r)l S 1?}%};" |E<Zn,r) Hnr + 1| + 12%§[§n

7*
“(5)-
Nn,r

=0 (max ((nén)2 , Ny, exp (—menvy,) | An)) .

Proposition 1 Under assumptions (H.1) — (H.4) and for all (21, ...,x,) C F,

{ = - (J?n (%) —W(ﬁl (l‘j))) 1<) < P} 2N (0,21, 0p)) -

Proof. The proof is based on Theorem 3 in the Appendix: For all 1 < r < k,,, set

Car =bnr —E(&ny) and wy, , = (W, (21), ..., Wn e (2p)) . Tt is easily seen that

(e (B o) =5 29)) 1 €5 €0} = S

where the ((sr); <, <y, are independent. Then (H.3), (H.4) and Lemma 2 i), ii) show that the

assumptions of Theorem 3 are satisfied. =
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Proposition 2 Under assumptions (H.1), (H.2), (H.5), (H.6), we have for all x € F,

nc

—)(E(fn(r)) —f(r)) —0asn— oo,

Kn (2

Proof. For all z € F, we get, by the triangle inequality and assumption (H.5),

nc

o (@) - @)=

Kn

anr ) 5111*)_ o f('l')
anr Enr ,Unr

: (g'w"”(””)') [ ) = o |+ o1,

Lemma 2 iii) and condition (H.6) give the result. m

IN

anr T)MPnr— N Cf(m)

kn ()

Theorem 1 1s a straightforward consequence of Proposition 1 and Proposition 2. The following
lemma shows that ¢,, converges to ¢ almost surely. In particular, it implies that ¢ can be replaced

by ¢, in the above theorem.

Lemma 3 Under assumptions (H.1) and (H.2), for all § > 0, there exist as > 0 and ns > 0 such

that Yn > ns, P(|cn — ¢| > 0) < 3exp (—nay).

Proof. We have

»(S) — nac| + ac

[en

1
e

apn

Let 6 > 0 and 55 = min(a/2, ad/(4c)). Then,

- - 2 7
[en — ¢l < [en = cllpa, —a>ns) + (EINn( ) — nac| + —) Lija,—al<nsts

and therefore

Pl 2 8) < P (L Ia(8) = nal 2 5 (5 222) ) 4 P, —al > )
gP(NZ—ELS)QE]c—g,c+%[>+@(|an—a|>ﬂa). (21)

Let us consider the first term of (21). Since N,(S) has a Poisson distribution with mean nac, it
can be expanded as N, (S) = Z:=1 g, where the m; are independent Poisson random variables
with mean ac. Introducing A, (s) = logE(e*™) = ac(e® — 1) and denoting

A A tlog (t/ac)—t+ac if ¢t>0
1) =« st — Ag(s)) =
=(t) = sup(s () .
+00 if £<0,
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Cramer’s theorem (see DEMBO & ZEITOUNI (1991), Theorem 2.2.3) yields

B (52 8 ot <canfn - ot o

7 — 00

Consequently, there exists af > 0 such that

VnZl,]P’(N;;—EIS)QE]c—g, c—{—%D < exp (—nal). (22)

Consider now the second term of (21) and observe that

kn
Blan) —a = > (Flénr) — pin)
r=1

Lemma 2 iii) implies that

[E(@,) — a| = k—n (max (An, (nén)Q, nY, exp (—mncyn)))
n

which converges to 0 under (H.1) and (H.2). Therefore, there exists ns > 0 such that

kn

Z((Eﬂ,r - E(&n,r))

r=1

Vn > ns, P([an —al > ns) <P(lan —E(an)| > ns/2) =P (

> 776”6/2) ,

and in view of Lemma 2 i), applying Bernstein’s inequality (see SHORACK & WELLNER (1986),

p- 855) yields that for some constants C; and Cs,

y ot ) ( nyc*n’ ) 2 ( s ) 23
n > ns, P(|a, — al > S2exp | —mo——~—— | <2exp | —=—F~=—mn]. :
> ns, P | > ns) < p Cik, + Consen ) — P Ci + Cansc 23)

Defining a5 = min(a’, nZc?/(Cy + Cansc)) and collecting (21)—(23) give the result. m

Proof of Corollary 1. It remains to verify that the difference

can be neglected in the central limit theorem. In this aim, let (z1,...,2,) C F. For all n > 0 and

d > 0, we have

P (s 1Du(a)) 2 1) S P(G = o 204 F (s 51T (o) = S1e)] 2 0018

where the first term converges to 0 as n — oo in view of Lemma 3. Thus,

-~

limsup P <1r£1'a<x | D (z5)] > 77) < limsup P (max ne 1Fa(z;) = flzs)] > nc/<5>
<i<p

n— 00 n—00 1<i<p "’bn(Ij)

=P (@f;pl%l > 770/5> : (24)
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where (G1,...,Gy) follows the distribution N (0, %, . ¢,)) under the conditions of Theorem 1.

Letting § — 0 in (24) yields

limsup P (max | Dy (25)| > 17) =0,

n—00 1<i<p

and therefore {D,(z;), 1 <j <p} 0. m

5 Applications

We first introduce a general class of kernel estimators which will be shown to satisfy our main result
given in Theorem 1. Then, we focus on the particular cases of Parzen-Rosenblatt and Dirichlet

kernels.

5.1 General kernel estimates

Consider an unbiaised version of Geffroy’s estimator:

En
Fal@)=> 175, (x) (1+ N7HVr,.
r=1

In order to smooth this estimator, a sequence K, : £ x F — IR, of general smoothing kernels

is introduced. Conditions on this sequence will be imposed later. The general kernel estimate is

defined by

folz) = / K (z,1) T, (t) v (dt)

= (/ K, (m,t)l/(dt)) (1+ NV (25)
1 \/1n,r

It appears that (25) is a particular case of (3) with &, , (z) = 1/,7; fI K, (z,t)v (dt) . In the case
where the calculation of this mean value is computationally expensive, it can be approximated by

K, (z,zy ) for some z, , € I, », leading to the simplified estimate

kn
:f;(r) = Z Unr Kn (2,25 ,) (1 + Nn_;) Y;yr, (26)
r=1

18



which is still a particular case of (3) with &y » (z) = K, (2, 2pn,r) .

In order to introduce the assumptions needed on K, , we set, for all z € E,
I, (z)= max sup {Kn(z,t) — Ky(2,5): (s,t) €Ly X I s}
r<kn

and

v, (z) =

/EKn(ac,t)f(t) v(dt) — f(2)].
For the sake of simplicity, assume that, for all n > 1, the partitions {I,, : 1 < r < ky,} are such

that v, , = k7! for all ¥ < ky,. Finally, for all function g : E — IR, we note

1/2
lall = [ a1, ol = ([ 9@ v@@) " and lgll, = supla o).

In this context, the general assumptions (H.1)—(H.6) can be simplified as:

(H'.1) ky 1 0o and n™ 'k, log (n) — 0 as n — oo.
(H2) 0<m< M < +oo and nk;'A,, — 0 as n — co.

(K.0) For all n > 1, [ p|Kn(2,1)|v(d2) v (dt) < co.

(K.1) For all (z1,22) € F x F,
o (21) 1 Kn o2, )l = 0 (1Kn(z1, Ml 1K (o2, - )lg) a5 m = o0,
(K.2) For all (z1,22) € F x F,
(Kn(e1, ), Kn(xa, )y (1K1, )l [[Kn(za, )lls) ™ = ole1,22) as n — co.
(K.3) For all z € F,

- - -1
kP K, Il

Kp(z, .)||p = 0as n — oo.
(K.4) For all z € F,

nk V2| K (z, 2 )||5" max (W, (2); A,

Kp(z, .)||;) = 0asn — co.
(K.5) For all z € F,

nk;1/2|

kn

Ka(z, )3 (Z / (K (2,1) = Ky (2,2,,,)) v (dt)) — 0 asn — oo.
r=1 YInr

The results established in Section 3 yield:
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Theorem 2 a) Under (H'.1), (H.2), (K.0) — (K.4), and for all (z1,...,2,) C F,

{nck;l/2

b) If, moreover, (K.5) holds, then for all (z1,...,2p) C F,

{nck;

¢) (27) and (28) also hold when c is replaced by ¢,.

Proof. a) For all z € F, we just verify (H.1) — (H.6) for kp, » () := kn fI Ky (z,1)

(H.1) and (H.2) hold trivialy. Moreover, by (K.1),

Zﬁm 21) kg r (22) kQZ/ / Kn(z1,8)Kp(22,t)v (ds) v (dt)

=k, <[{n(l‘1, : )a[{n(wQ’ : )>2

kn
+ k2 Z/ / K (22,t) (Ky(21,5) — Kp(21,1)) v (dt) v (ds)
r=11In,r JInr

kn

oy Nz (B @)= £ @) 1 1<5<pf 2 N (0,5, ).

gy Mz (Fatag) = F @) 10 <P N (0,500,,0y)

(27)

(28)

=k (Ko (21, . ), Kn(2a, . )y + ka0 (Z T, (xl)/ |Kn(a:2,t)|y(dt)>

r=1 n,r

= kn [(Ka(z1, ), Ka(@2, 2 ) + o ([[Kalzr, )l [[Knl22, )]

Hence,

o () = kL2

(n(z, - )lls (L+o (1)),

and (K.2) leads to
kn

Z W, (1) Wy r (22) = 0(21,22) +0(1),

r=1

which is (H.3). Now, (29) entails for all large n,

oL=1/2 1 -1
(i Jwn (@) < 2k (@, )l R max

/I Kz, t)v (dt)

<2V K (e, D5

(@, e

—0asn—ooo by (K.3),
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i.e. (H.4) holds. In order to show (H.5), note that using (29) again in combination with Fubini

Theorem (which holds by (K.0)) and the triangle inequality yield

Zynrﬁnr fnr_f()

”/1 KD (8 v (v (ds) = ()

< n/“ﬂ“Kn (@, ) (f (s) = F(&)) v (dt) v (ds)| + nn(z)‘lln (z)
< mk; VK (e, 5! (A Z An (z,t)v (dt)] + W, (1‘))
< 2k || K, )y ( ()]l 4 W (2)

—0asn—o0 by (K.4).

Finally, we show that (H.6) holds. Since max ((n(sn)2 ,An) =0 (nk;lAn) , it follows that
Z|wn, )| max ((nﬁn)2 ,An)
1
Il Z kn

Kn(z, )"

< 27 / Koz, 1) (dt)|o (nk;'A,)

= o (nk; /2 n(, )l An) = 0(1) by (K4)

and, since, by (H'.1), nexp (—mcnk;l) — 0,

kn
; |wn (2 )|nk exp (—mcnkgl) < nexp (—mcnk; ) 2171_%); |1 r(2)]

- 0< max |wn,(x)|> =o(1) by (HA4).

1<r<kn

b) For all & € F, it is easy to see that

el LIORIAC
ko
< AMnk V2K, )l (Z / <Kn<x,t)—Kn<m,mn,))u<dt>)

=o0(1) by (KJ5),

which, combined with (a), give the intended result by standard arguments.

c) is straightforward by Corollary 1. m

Two illustrations of this result are now provided. See MENNETEAU (2003b) for other applications.
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5.2 Parzen kernel estimates

In the following, we take E = [0, 1]¢ (d € N*), v is the Lebesgue measure on E and {I, , : 1 <r < k,}
an adjacent equidistant partition of £ such that I, , = H}i:l Jnr; where the J,, , ; are interval
of [0, 1] of length k;l/d, leading to vy, , = k;l for all 1 <7 < k,. Besides, we denote by z, » the
center of the cell I, ,, r = 1,...,k,. The multivariate Parzen kernel estimate is then defined by

the kernel

1 —t
Ko (2,1) = 7o K77 <“”h ) :

PR . R4 5 R+ is a I-Lipschitzian Parzen-Rosenblatt kernel with compact support K, and

where K
(hy) is a sequence of positive real numbers tending to zero. It tunes the smoothing introduced by

the kernel. For a review on non-parametric regression, see HARDLE (1990). We suppose that f is

a-Lipschitzian (0 < « < 1), in particular,

A, =0 (k;a/d) . (30)

Corollary 2 Assume that (i) n~ 'k, log (n) =0, (u) hik, — oo and (iii) nkgl/zh;’{*d/z — 0 then

o

for all (z1,...,2p) C E = (0, l)d,

{vne (Fales) = fle)) 1< <p} = N (0. [KP7)3 1), (31)

where I, is the identity matriz of R? and v, = nhzﬂk;lﬁ,

The choice h,, = n~ 5 and k, = nﬁuz lead to vy, = naawugl, where u, — oo arbitrary slowly.
Proof. (K.0) holds trivialy and assumption (i) gives (H'.1). To show (H.2), note that (30) entails
nk='Ap = O (nk;(Ha/d)) (32)
and thus, by (i) and (ii7)
nk, HHe/4) = (nk;1/2h§+d/2) (hika) ") = o1y,

Let us consider now (K.1) — (K.4). To this aim, set 2 € E. For large enough n (i.e. such that
K Chil(z—E)),

K, (z, .)||1:/h_1( 5 KPR (u)du = 1. (33)
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1/2
Kn(z, |, = hn® (/ (KPR)’ (u)du) _nt sl (34)
hal(z—E)

W, (z) = h;*

[ R @ =0) 0= £ (0) dt\

/KKPR (u) (f (& — hnpu) — f(x)) du

=0 (hy). (35)
Moreover, since KFF is 1-Lipschitzian,
Ty (z)=0 (k;l/dh;(d“)) . (36)
To check (K.1), take (z1,22) € F x F, then (33),(34), (36) and (i7) entail

Do (@1) [[Ka(@z, )l = O (k7 /7 @) = (kahd) ™" 0 ()

= o(IIKn(zr, s 1K (22, )ll2)

(K.2) follows from the fact that for #1 # s, we eventually have,

(Kn(z1, . ), Kn(z2, . )y = h;d/ KPR (u) KPR (u4 bt (21 — 22)) du = 0.
hy'(z1—E) ' '

For (K.3), note that, for all z € F,

- e - e —_ 4 -1 —
k2K (2, DIyt Ea(z, g = ki 2R [ KPR Ryt |

n

KPR = o (1)
with (¢7). Finally, for all z € F, (33) — (35), (ii) and (iii) entail

1/2 |

nk K, (z, . )||2_1 max (¥, (z); A, |

Ko, ) =0 (nk;u%zm (hf{ +k;a/d))

) (nk,;l/Qh,%Jf“) —o(1).
The end of the proof is straightforward. =

From the asymptotical point of view, An is better than f;l and than the estimator based on
Parzen kernel proposed, in the unidimensional case, by GIRARD & JacoB (2001). When f is
a-Lipschitzian, the speed of convergence of ﬁl can be chosen arbitrarily close to the minimax
speed n~ =+ (see HARDLE et al (1995b)). Let us also note that the regularity of f, and f, is

determined by the choice of the Parzen-Rosenblatt kernel.
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5.3 Projection estimates: Dirichlet kernels

In the sequel (b,,) is a sequence of integers tending to infinity. Let (e;);en be an orthonormal basis

of L? (E,v). The expansion of f on this basis truncated to the b,, first terms is noted
by
:Zajej(a:), rEF.
7j=0
Each a; = fE e;(t v (dt) is then estimated by
En
Grn =) (f eAt)v(dt)) L+ N, 1<i<by,
r=1 n,r
leading to an estimate ﬁz( z) of f,(z) via:
b En
Z ner@) =3 / KP (2,0 (dt) ) (1 + NZDYY?, (37)
£=0 r=1 I""’ . 7
where K the Dirichlet’s kernel associated to the orthonormal basis (e;);jen defined by

KP (z,1) = . - ej(x)ej(t), (z,t) € B2 (38)

Tt appears that (37) is a particular case of (25) with K,, = K. Of course, the sometimes more

easy to handle estimates
ful@) =D vn o KP (2,20 ,) (14 Ny DY, (39)

can also be defined. Below, we focus on the trigonometric basis on E = [0, 1], v is the Lebesgue
measure on B, {I, . : 1 <r <k,} is the equidistant partition of F and then v, , = 1/k, for all

1 < r < ky. This basis is defined for z € [0,1] b
eo(z) = 1, eap—1(z) = V2 cos (2kmz), ea(z) = ﬁsin(?kﬂ'm), k> 1.

It is easily seen in that case that the Dirichlet kernel is

sin (14 bn) w (2 — 1))

KP(z 1) = for : 4
o (2,1) sin (7 (z — t)) or z
=140, fz=t.
In the following, we assume that f is C2. In particular,
Bn=0(k7") (10)

Besides, we introduce the boundary conditions f(0) = f(1) and f'(0) = f'(1).
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Corollary 3 Assume that (i) n~ 1k, log (n) = 0, (i) n~lk2 — oo, (iii) (bn log(bn))_1 k, — oo

and (iv) nk;1/2b53/2 — 0. Then, for all (z1,...,z,) C[0,1],
{one (Fales) = £)) 1 <G <p} 2 N (0,1,), (41)

where v, = n(bnkn)_l/Q, The choice b, = n7 and k, = n? log (n) u? leads to v, = nz log (n)_1/2 u-l

n 7’

where un, — co arbitrarily slowly.

Proof. (K.0) holds trivialy. Assumptions (i) and (ii) give (H'.1) and (H.2). The following facts

are well known (see e.g. ToLsTov (1962))

EP(z, ), = (1 +6)"", |

kel

|

KP(x, )|z =1+bn, |

kel

KP(z, )|, = O (log (b)), (42)

(Kn(z1, . ), Kn(za, . )y = Kn(x1,22) = 0(by) for 1 # za. (43)

Since fis C?, and taking into account of f(0) = f(1) and f’(0) = f’(1), a double integration by

parts yields,

max j /0 Ft)ej(t)ydt =0(1).

j>0
Hence,

Z/ f(t)e; (t)dte;(x Zy ): (b;1). (44)

J>bn J>bn

Moreover, since max j~! ||e’-
jz1

! ||E = O (1), the Taylor formula gives

ba
z) < Z lej(x)|sup {e;(t) —ej(s): (s,t) € Iy X In,}
7j=0

=0 (k;l ZJ) =0 (k;'b2) . (45)

Finally, (42) — (45) together with (i)-(iv) imply (K.1) — (K.4), the proof being similar to the one

of Corollary 2. m

In this situation, both estimates ﬁl and fn are C*°. From the asymptotical point of view, ]/”;l is
better than fA‘;L and than the estimator based on projections proposed by GIRARD & JacoB (2003b).
Nevertheless, when f is C?, the above estimates are suboptimal, since the minimax speed of

convergence is n=%/3 (see e.g. HALL et al (1998)). The use of expansions on wavelet bases should
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lead to a better speed of convergence. This is part of our future work.

We refer to GIRARD & MENNETEAU (2002) for a brief comparison on simulations of some of the
previous estimates. Let us also emphasize that in such finite sample situations, the quality of the
estimation strongly depends on the choice of the hyper-parameters. The estimates of type (b)
described in introduction and more generally the estimates (3) require the choice of two hyper-
parameters: the number of extreme values (k,) and a smoothing parameter (b, or hy). Similarly,
the estimates of type (a) usually require to select two hyper-parameters: the rate of decrease of
the density towards 0 (noted £ in the introduction) and the number of continuous derivatives of
f (noted ¢ in the introduction). In our opinion, one of the main problems in both cases is now to

define an adaptive method for choosing the hyper-parameters.

6 Appendix

We provide a general theorem about the central limit property of a sequence of random R? valued

vectors
kn

0, = 211),17,(,17,, n>1,

r=1

where (wn )¢, cp. CRP and (Cnr)ic,p<p. are random variables such that:
(A1) (Cnr)i<pey. are centered and independent random variables.

(A.2) ex IE(¢Z,) —1]—0.

(A.3) There exists a covariance matrix ¥ in R? such that for all A € R?,
kn
D (wnr, Agp — AT,

r=1

(A4) max flwnrllzs = o(1).

(A.5) limsup limsup 1<rr:€<n;nTE(CZVT1{|Cn’r|>Q}) =0.

oa— 00 n—00

Theorem 3 Under assumptions (A.1) — (A.5), 6, s N (0,%).
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Proof. We have to show that, for all A € R?,
¢
(O, Ngr = N (0, ATN) . (46)

Now, by Lindeberg Theorem (see e.g : DUDLEY (1989) p. 248), it is easy to see that (46) holds

whenever for all € > 0,

2 _
limsup Z Wn py A E(Cﬂyr1{|(wn,r,>\)m,,g‘n,r|>s}) =0. (47)

n—0o0

Fix A € R?, ¢ > 0 and a > 0. Using (A.4), we get for all n large enough and all 1 < r < k,, that

1{|(wn,r7>\)man,r|>E} S 1{|Cn,r|>a}- Hence,

2
limsup Z Wn py A E(Cn,r1{|(wn,,,)\)m,,§n,r|>5})

kn
< limsup (Z<wn,r5)‘>§§p) max E(Cnr {I¢n, r|>°‘})

n— 00 1<r<kn
r=1

t
< AMAlimsup may E (G o1 jcu>a)) -

and we get the result by (A.5) when ot oco. m
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