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Abstract

In this Note, the L;- error of Geffroy’s estimate of a Poisson point process boundary
is shown to be asymptotically normal. We give conditions such that the asymptotic
mean and variance do not depend on the unknown boundary. This result is illustrated

by a simulation.
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1 Introduction.

In the literature, many papers address the problem of estimating a set D given a finite
random set of points £, drawn from the interior. The first proposal is given by Geffroy [5]

in the case when the set can be written
D={(z,y) eR*|0<2<1;0<y< f(z)h

and where f is an unknown function. Thus, estimating D reduces to estimating f, and
the proposed estimate f, is a kind of histogram based on a set of extreme values of X,
(see Section 2 for more details). Geffroy gives convergence conditions and Gumbel limit
distributions for the maximal error between f, and f even for non uniform samples. It has
been shown in [9], Theorem 4.1.1, that f, can be tuned in order to be minimax for estimating
a continuous function f with bounded derivative in the case where X, is a random sample
uniform on ). Here, we establish in Section 2 the asymptotic normality of the L,- error
between Geffroy’s estimate f,, and the true function f in the case where X, is a Poisson
point process.

Similar results have been proved in the context of density estimation: The asymptotic
distribution of the Li- distance between f, and E(f,) is established in [1] for univariate
densities. This result is precised in [3] by considering the L;- distance between fn and the
unknown density f. The multivariate case is presented in [2]. All the results are established
for samples via a Poissonisation technique. Thus, the results presented below should be
considered as the first step towards the study of the sample case.

The proof is based on the independence properties of the Poisson process and on precise
expansions of the extreme values moments, see Section 3. It will be the starting point for

similar works on other estimates obtained by smoothing fn [4, 7, 8, 6].




2 Main result.

For all n > 0, let N, be a stationary Poisson point process on R* with intensity rate ne,,
where (c,) is a positive sequence tending to some ¢, > 0 as n goes to infinity. Actually,

suppose that we merely observe the truncated point process N, (.N D) with
D={(r,y) eER*|0<2<1;0<y < f(2)), (2.1)

and where f is a a-Lipschitzian (0 < o < 1) positive function. The set of points associated
to Ny, is denoted by ¥,. Let (k,) be an increasing sequence of integers. Introduce (I, ),
r=1,...,k, the associated equidistant partition of the unit interval, (D, ), r =1,...,k,

the corresponding partition of D into k, cells:
Dn,r = { (il‘,y} € DI-TE Jrn,r }s

and ¥, , = D, ,NE,. Let U, , denote the supremum of the second coordinate of the points

assoclated to the truncated process Ny(. N Dy, . ):
Un,r =suplY; | (X, Y5) € En.r} if £, # 0, Unr = 0 otherwise.
Geffroy’s estimate [5] is defined by the piecewise constant function:

fal®) =Up,forallz eI, ..

1
g
0

the L;- error between f, and f. The assumptions required for studying the asymptotic

We denote by

fa(2) = f(2)|dz,

behavior of A, are summarized below. Assumptions on the unknown function are collected
in (A1), assumptions on the size of the partition are listed in {A2) and conditions on the
intensity rate of the Poisson point process in (A3).

(A1) f is a-Lipschitzian, o € (0, 1] and strictly positive on [0, 1].

(A2) kn 5> o0 asn— o0, ky, =o(n/Inn) and n = O (k1**).

(A3) ¢, >0 and ¢, = coo 38 1 —+ 00, with 0 < ¢y, < 00.



In most situations, the sequence (c,) is constant. Nevertheless, (A3) allows more general
intensity rates, which can prove to be useful for tackling the sample problem. In the sequel,

we note u, < vy, if (u,) and (v,) are two positive sequences such that
0 < liminf u, /v, < limsupu, /v, < oo.

Our result is the following:

Theorem 1 Under (A1)-(A3),

Nen

1/2
Sn 'n/

(As — B(An)) -2 N(0,1),

whebe sy =1 ffmes Rimeiandie e fafin = ol kiray.

Corollary 1 Under the conditions of the above theorem,

k n
B - 22| =0 (7). (2:2)
Thus, if moreover n = o (k?,“"'a), then
ncp kn d
b = SR N, 1) (2.3)

when n — co.

In view of (2.2) and under (A2), the optimal speed for E(A,) is obtained for sequences
(kn) such that k1*® < n. For such a choice, the result of Theorem 1 is difficult to use
in practice since the centering sequence E(A,) is not explicit. On the contrary, the choice
n='o (kﬁ“""“) is suboptimal but it leads to an explicit limiting distribution (2.3). Moreover,
this distribution is independent of the unknown function f. Then, it can be used to test
if the boundary function f has a specified form f3. To this end, consider the hypotheses
Ho : {f = fo} and H, : {f # fo}. Under the hypotheses of Corollary 1, the test which

rejects the null hypothesis when

it k kl/?
f falz) = fole)|dz > = + =—@" Y1 — )
0 nep  ncn




has asymptotic significance level 4 € (0, 1), where @ denotes the standard normal distribu-

tion function.
Finally, we simulated 500 replications of a Poisson process with intensity rate ne, = 200 on

the set D defined as in (2.1) with

sin(2mz)

ke 1.1+ cos(2mz)’

On each of the 500 simulations, Geffroy’s estimate is computed (with k, = 35), see Figure 1
for an example of result. The normalized L;- error is then estimated on each simulation

and its empirical distribution is compared with the N(0, 1) density on Figure 2. The two

distributions looks similar.

3 Proofs.

For the sake of simplicity, let us introduce some supplementary notation:

My r = mf{f(.r) | zE Iﬂv"}’

A [, I

Let us denote by G, . the cumulative distribution function of U, ., for each r =1,... ky.

If0 <y < my,, it can be written:
Ren
G (4) = PUn < 9) = PP\ (I 10,0) = 0) = exp (G20 = o)) (1)
n

We also introduce g, » the function defined by

ney

, ney ne aue
gn oY) = k‘ Gnrly) = ke exXp (k_n(y__ kn)‘ﬂ.f)) . (3.2)

The distribution of U, , involves a Dirac distribution at the origin:

Gn,r(a} = P(Unr=0)= exp(—nc,,,\ﬂ,,-), (3.3)



and a density distribution on the interval (0, m,, »):

G{., _,.(y) == yn.r{y)'

The distribution of U, , on the interval (my, », M, ,] is not precisely known but it can be

controlled with the Lipschitz condition (A1) which yields:
X (Mo =) = O (1/k5) (3.4)

To prove Theorem 1, we need three lemmas. First, we quote in Lemma 3.1 some results on

the largest values of the Poisson process.
Lemma 3.1 Under (A1)-(A3), we have

(i) ,ax (1—'Gnr?nnr‘ = ( ),

1i) max
(35 1<r<kn

(5 n
( nr‘)_knAnr+_‘ O(m):

L..
E([Un r kﬂ/\n r] ) n2c2

iii) max
( )15%“

(iv) m%)f E[Unr — BnAn 1) = _Gn 7] +0 (W)’

v) max
v 1<r<k,

Var(lrn,r | Un‘r S mn,r) - =L
n

Proof : (i) is a consequence of (3.1) and (3.4).

Proof of (i1). The mathematical expectation can be expanded in four terms:
knAn,r
E(Un,r =3 knAn,r) = '—knAn,an.r(O) +f (y == k"Aﬂ‘?‘)gn.'r(y)dy
0

Rk My
£ f Bk (o h [ e

Min,r Mn,r

def

En.r,l it En,r..’? = En,r,a + Eﬂ,f‘.‘?‘

Partial integration yields:

k K
Enr2==Enra1+ = exp(—nen * (3.5)
ney TiCn
We thus obtain
kn
E(Un,r) - kn)‘n,r 2 = 1,r,3 = En,r,d :
T ney,




The first term is controlled by the condition k, = o (n/lnn):

kn 4
— e - <) = i 3.6
e (o exp(—ncnAn ) = 0(n™*), (3.6)

for all s > (. Besides, in view of (3.2), g ~(y) < nen/ky, for y < kpA, ». It follows that

KnAn,r
nea, ' ne, e n .
Eﬂ,r'.3 < 3 [ (knAﬂ',» - y)dy < AL.—I(MH',- == m.,,,,.)~ =6 (W) - (37)
kﬂ My, r 'l"n kn

uniformly in r with (3.4). The third term is bounded above by

Mot n
|En,r‘4| = (}wn,r T THn,r)f Garldy) = (Mpr — mp o J(1 = Gn,r(”ln,r}) =@ (m) )
{3.8)
uniformly in r with (i) and (3.4). Collecting (3.6)-(3.8) concludes the proof.
Proof of (ii). Similarly, we have
Fa Xy
2 2 + o
E(Unr = kodarl?) = K2 G0+ [ (0= o) 5y
0
o M, . i
= [T ke o @yt [ 0= ke G ()
. Ma,r
def ' ' ' /
TR En,r,l +En.r,2+En,r,3+En,r}4'
A new partial integration yields:
15 7 k"
En,r‘Z = _En,r_l 7 21?(! En.!‘,?- (39)
“n
We thus obtain
2 kﬂ 1 ’
E{[Un,r) Fy kn’\n,r] ) = _Q;I_C—Eﬂ.rﬂ o En,r,S o En,r,e;-
The first term is evaluated with (3.5) and {3.3):
1 kz k? k'l
o, kl En‘,-g = 49 2112 1) i (En,r,l - —-—exp(—nCn/\n'r))
ney necy ey Nty
L 1
2 nzci e 2E EXP(—-?ICHA“'-,-) (I\n_'r + 71(‘,,_)
b e 3.10
= Irl.2(_121+o(n e (3.10)
for all 5 > 0. The second term is bounded as in (3.7):
Toh n
BE S Mg o by gRE 0 (m) : (3.11)
kn kn
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uniformly in » with (3.4). The third term is bounded as in (3.8):

; 7 n
Eﬂ,f.4 < (Myr —mp ) (1 = Gn."(mn.r)) =0 (ETHT) ) (3.12)

uniformly in r with (i) and (3.4). Collecting (3.10)-(3.12) concludes the proof.

Proof of (iv). The proof follows the same lines as the previous ones. We have
kndn,r

B(Unr ~kadorl') = ENLGar0)+ [ (0= Fada o )y
0

EnAnn v
¢ [ w—maﬂaumw+[ (= kadn ) 3G (dy)

Mn,r Ma,r

déf E::,r,l =+ E::,r,? i E::,r,.'} =k E"

n,r4:

A new partial integration yields:

E::,r,? = —E::,r,l == 3:; Er’z,r,r
We thus obtain
3 kﬂ ' " 7
E([Unr) = kndnr]’) = =3—=Fy, o+ Byl 13+ Bp e
n

The first term is evaluated with (3.9), (3.10) and (3.3) leading to:

LR L LR (3.13)
Lo n*cd

for all s > 0. The second term is bounded as in (3.11):

nen

n
Bara S 7 (May—mn,)' =0 (k—}lq:z;) ; (3.14)

uniformly in r with (3.4). The third term is bounded as in (3.12):

E:;,r,tl S (Mn.r‘ o mn.r)a(l e, Gn,r(m""')) e (kl_zq“_) z (3.15)

uniformly in r with (i) and (3.4). Collecting (3.13)-(3.15) concludes the proof.

Proof of (v). The variance can be expanded as

BUR 1 (U <5u,. b Bl e € 1 31N 2
VBE(Uns | Unp < 1) = il Wor S0 )) (E“’ I{Un,r < o, }’) . (3.16)

Gn,r(”"n,r} Gn,r(’“n,r)

where [ {.} is the indicator function. Now,

P, r kn k2 3
E(Urm-ﬂ {Un,r S nlﬂ,f‘}) = ] ygn,r(y)dy = (mn,r - ‘—"ﬂc" +o (_n)) Gn,r(mu,r),
Q

2
" n
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where the sequence o(k2 /n®) is independent of r and, similarly,

- 5 i ke, k2 ke
E(U: I{Up <mn,}) = (mn .- QT 2—)—?2—2 +o (;23)) @ plimg):

y
i1 T n

Replacing in (3.16) gives the result. L

Introducing for r = 1,..., kpn,

tnp= [ |f@) = Fulo)

n,r

dr = ,[I ‘f('r) = Un,rldir,

the Li- error can be rewritten

The (A, ;) are non negative and independent since they are built on extreme values of
non-overlapping Poisson processes. The moments of the random variables (A, ;) are then
controlled thanks to the Lipschitz condition of (A1) in Lemma 3.2. These results are

complemented by Lemma 3.3 which provides a lower bound for the variance.

Lemma 3.2 Under (A1)-(A3),

: 1 n

() mext (B - o= 0 (—3@)
2 3 Inf} 4 n

(ii) ey (AL -) — o 0 (?ﬁ)

6 n
anw 3
(1i1) 12:2);:‘“ T A= e _n3c?, +0 (—kf,“"')

Proof : Recall that, for any function g, we can always write |g| = g + 2¢g~, where g~ =

—min(g,0). Thus, A, . can be expanded as A,y = Bny + Cn r, forr=1,.. ., kn with

Bur= [ ()= Fal@ldr =, - fe (3.17)

In.r

Crr=2 [ (@)= fale)dz=2 [ (Uar=fNIWr > [}z (318)
Jis 7

Proof of (i). We have the evident inequality

B,

it

max
1<r<k,

< max
= 1<r<k,

1
E(Bn,r) & Ei + ig}%’-i“ E(Cn,r)s
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where the first term is controlled with Lemma 3.1(ii):

B(llr) oy ok

‘n ncy

max
1<r<kn

E(Bn,) — < max

nen | = 1<r<ka

n
-0 ()
Remark that in (3.18), U, » < M, , and f(z) > m, . Thus,

My —my

0<Cyr <2AM;,, — m,,,,.)/ el ar = 9 B R n
F P

kn
(3.19)
and therefore
v Mn.r — My r n
E(Cn,r) S 2'-—-?’;—'—"“*(1 = G,,,,.(mn‘r}) =) (W) 5
uniformly in r with Lemma 3.1(i), and the result follows.
Proof of (i1). We have the inequality
E(A2 2| < |g(a2 2 | 2E(|Ba,| Car) + E(C2,)
( n,r} lecﬁ = n,r) nzcﬁ ( n,ri~n,r {2 i
Let us consider the three terms separately. In view of Lemma 3.1(iii), we have
2 By 2 n
9 h n,r o
et - | = [ (e = 5) -] =0 () G20
uniformly in r. Now, (3.19) implies for all r =1,..., ky,
0<C?, < 4%:#}1 [, AR
n
and thus
5 (M, —my,, JE n
E(CE,,) < 425 (1 - Gl )) = O (5w (3.21)
uniformly in » with Lemma 3.1 (i). Finally, in view of (3.19),
A I
B(| B 055) " % 2Mk—m E ( P (/AR mn‘.»})
n n
Mo —mai)?
< QLE__L.%___’Q(I — Gar(mn )
n 5
=0 (W) s (3.22)

uniformly in r with Lemma 3.1 (i). Collecting (3.20)-(3.22) gives the result.

Proof of (iit). Using the expansion Ay, » = By, , + Cp », we have

E(A} ;) < |E(B3 )| +3E(B] ,Cnr) + 3E(1Bar| C3 1) + E(CR ).
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First, Lemma 3.1(iv) yields

> 1 6 .
|E(B2,,.)| = k_3 IE(H[“J o knAn,r}a)l S S O (P‘g‘_—;) 1 (323)

3,3
fch

uniformly in r. Second, in view of (3.19),

kn n

(Mar=mn:)’
k3

n
e O (W) 3 (324)

uniformly in r with Lemma 3.1 (1). Similary,

2 Inr — r I :
E(Br“l,rc'ﬂ,f‘) S 21‘1 : o E ([Ansr i Lk ; ] EI{Un.a" = mn.r})

IA

2 (1—Gnplmny))

B(B,1c,) < altesmelp (- Solig,, > m o))
s
N (zg%z) ; (3.25)
uniformly in r. Finally, (3.19) yields
e ) s G ) =0 () 629
uniformly in r. Collecting (3.23) - (3.26) concludes the proof. |

Lemma 3.3 Under (A1)-(A3), there exists K > 0 such that
K
=

7z (1+o(1)).

min Var(A4,,) >
1<r<ka el
Proof : As a consequence of the variance decomposition formula:

Var (An,r) 2 P(Un,r S 7“11,r) Var(An,r ! Uﬂ,r‘ S 7nn,r)
1
== Gﬂ‘r‘(rnﬂ..?')k_z Var (Un,r i Un,r S n?n,r)n
n
since Anr = Bar = Mr — Uny/kn when Unyr < mu, (see (3.17)). Remarking that

Gp »(my ) is uniformly bounded from below and taking into account of Lemma 3.1(v)

conclude the proof. |
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Proof of Theorem 1. The quantity of interest can be expanded as the sum of a triangular

array of independent and centered random variables (Y, ,):

[ ko
: nen ney,
Sn = 375 (An = B(An)) = P 175 (Anr = B(An)) = B
'n r=1 Fn r=
where Y,, - is defined by, for r = 1,...,kn:
ne
Yn,r = k:,li;; {Aﬂ,r = E(An,r)) £

Let s2 = VarS,,. A sufficient condition for S, /s, 528 N (0, 1) is provided by the Lyapounov

condition
k
S LS
Jim Z; E ((}W| ) i (3.27)
Lemma 3.2(1)-(ii) yields

2.9 ka
nCy 2
2 = DY IBAL,) - B (dns)]
r=1
2 n 1 n e
o 2.2
= o[z 0 (gfe) - (s (i) |
TI2
= 140 (W) . (3.28)

Two situations appear. If n = o (k}*®) then s, = 1+ 0(1). If n < 1+, Lemma 3.3 entails

spn > K(1+ 0(1)) which, together with (3.28), yield s, = 1. In both cases, condition (3.27)

reduces to
Be
i D2 Y0
We have
i n3c3 kn 3
3 e ;
;E (|Yn.r| ) = e 2. E( LRl )
3.3 Kn
S 8:'13/ Z ('An r; )
}' r=1
48 4
seliho (i)

with Lemma 3.2(iii) and thus (3.27) is verified. As a conclusion, S, /s, 4y N{0,1) as

n =00.
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Proof of Corollary 1. As a consequence of Lemma 3.2(i):

n
-0 (g=).

ncy by, n?
o (B - 52) =0 ()

which converges to 0 under n = o (ki“‘m). [ ]

kn

1
‘E(An} -

E{4, ;) — —

ney

< kp max

s 1<r<k,

and (2.2) is proved. Then,
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Figure 1: Example of result obtained on a simulation with Geffroy’s estimate.
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Figure 2: Comparison between the empirical distribution of the normalized ;- error and

the standard normal density.



