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A DIRECT LEBEAU-ROBBIANO STRATEGY
FOR THE OBSERVABILITY OF HEAT-LIKE SEMIGROUPS

Dedicated to David L. Russell on the occasion of his 70th birthday

Luc Miller

MODAL’X, EA 3454, Bât. G,
Université Paris Ouest Nanterre La Défense,

200 Av. de la République,
92001 Nanterre Cedex, France.

Abstract. This paper generalizes and simplifies abstract results of Miller and
Seidman on the cost of fast control/observation. It deduces final-observability

of an evolution semigroup from a spectral inequality, i.e. some stationary ob-

servability property on some spaces associated to the generator, e.g. spectral
subspaces when the semigroup has an integral representation via spectral mea-

sures. Contrary to the original Lebeau-Robbiano strategy, it does not have

recourse to null-controllability and it yields the optimal bound of the cost
when applied to the heat equation, i.e. c0 exp(c/T ), or to the heat diffusion in

potential wells observed from cones, i.e. c0 exp(c/Tβ) with optimal β. It also

yields simple upper bounds for the cost rate c in terms of the spectral rate.
This paper also gives geometric lower bounds on the spectral and cost rates

for heat, diffusion and Ginzburg-Landau semigroups, including on non-compact

Riemannian manifolds, based on L2 Gaussian estimates.

1. Introduction. This paper concerns the so-called “Lebeau-Robbiano strategy”
for the null-controllability of linear evolutions systems like the heat equation. The
Lebeau-Robbiano strategy was originally devised for the heat flux on a bounded
domain of Rd observed from some open subset of this domain. It originally starts
from the interior observability estimate for sums of eigenfunctions of the Dirichlet
Laplacian proved by some Carleman estimates at the end of the nineties in joint
papers of Lebeau with Jerison, Robbiano and Zuazua, cf. § 2.4.

In the last decade, many people have contributed applications, e.g. to nodal sets
of sums of Laplacian eigenfunctions in [24], to coupled wave and heat equations
in the same domain in [29], to the heat equation in unbounded domains in [34],
to anomalous diffusions in [37], cf. § 4.1, to structural damping, e.g. the plate
equation with square root damping, in [36, 3], cf. § 4.2, to thermoelastic plates
without rotatory inertia in [6, 39, 12, 46], to the heat transmission problem in
[31], to diffusions in a potential well of Rd in [40], cf. § 4.3, to the heat equation
discretized in time or space in [51, 7], to semigroups generated by non-selfadjoint
elliptic operators in [27]. We also refer to the survey [30].
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2 LUC MILLER

The Lebeau-Robbiano strategy was already stated in abstract settings with
bounds on the cost of fast control of the form c0 exp(c/T β) in [37, 46]. Our goal
is to retain the most general features of both papers while simplifying the proof to
improve the estimate of the cost.

The paper [37] concerns semigroups generated by negative self-adjoint operators,
introduces some notion of observability on spectral subspaces, cf. § 3.6. It links
the exponent β in the fast control cost estimate to some exponent in this notion,
but falls just short of the optimal exponent. It combines final-observability and
null-controllability as in the original setting, but does not use Weyl’s eigenvalues
asymptotics, not even the discreteness of the spectrum of A. The assumptions
brought out in [39] and introduced as an abstract framework in [46] allow generators
which are not self-adjoint, but do not apply to the semigroups considered in [37,
40]. Thus the notion of relative observability on growth spaces adopted in § 2.2
is a little more general. The paper [46] achieves the breakthrough of reaching the
exponent β = 1 which is optimal for the heat equation, but it adds approximate
null-controllability as another layer to the strategy.

Here, the strategy goes directly from relative observability on growth spaces to
the estimate of fast final-observability cost, and reaches the optimal exponents β for
the observation from cones of heat diffusion in potential wells V (x) = |x|2k, k ∈ N∗,
cf. § 4.3. Its sheer simplicity yields straightforward upper bounds of the rate c in
the fast control cost estimate. Since it leaves null-controllability out, it can be seen
as a shortcut to the original Lebeau-Robbiano strategy.

Section 2 introduces the abstract setting, states and proves the direct Lebeau-
Robbiano strategy. The abstract result is connected to the original Lebeau-Robbiano
setting in § 2.4. Section 3 gives further background, four lemmas which may be of
independent interest and some open problems. Section 4 describes the application
of the main result to the P.D.E. problems considered in [37, 36, 40]. Section 5 gives
lower bounds on the rates in the cost of fast control and in the observability on
spectral subspaces (e.g. the estimate for sums of eigenfunctions in § 2.4).

2. Setting and main result.

2.1. Observability cost. We consider the abstract differential equation

φ̇(t) = Aφ(t), φ(0) = x ∈ E , t ≥ 0, (1)

where A : D(A) ⊂ E → E is the generator of a strongly continuous semigroup
(etA)t≥0 on a Hilbert space E . The solution is φ(t) = etAx. Although we may think
of A as a nonpositive self-adjoint operator with an orthonormal basis of eigenfunc-
tions for example, cf. § 3.6, our setting has applications where A has no eigenvalues
(e.g. in § 4.1 when M = Rd) or A is not a self-adjoint operator bounded from
above (e.g. A does not even generate an analytic semigroup in § 4.2 for γ < 1/2, cf.
[11, 23]).

We also consider an observation operator C ∈ L(D(A),F) admissible for this
semigroup, cf. § 3.1, i.e. C is a continuous operator from D(A) with the graph norm
to another Hilbert space F and satisfies (norms in E and F are both denoted ‖·‖)∫ T

0

‖CetAx‖2dt ≤ AdmT ‖x‖2, x ∈ D(A), T > 0. (2)

N.b. the admissibility constant T 7→ AdmT > 0 is nondecreasing. We may think of
C as a bounded operator from E to itself for example.
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We say that (A,C, T ) is observable at cost κT > 0 if

‖eTAx‖2 ≤ κT
∫ T

0

‖CetAx‖2dt, x ∈ D(A). (3)

N.b. as T → +∞,
√
κT does not grow more than the semigroup and, e.g., when

A is nonpositive self-adjoint T 7→ κT is nonincreasing and decays at least like 1/T ,
cf. § 3.2. This final-observability of (1) through C in time T > 0 is equivalent to a
controllability property for which κT is the ratio of the size of the input annihilating
the disturbance to the size of this disturbance, cf. § 3.2. We are interested in the
asymptotic growth of κT as T → 0 and think of κT as the cost of fast control.

The crucial lemma to bound this cost here is (cf. a continuous version in § 3.3)

Lemma 2.1. If the approximate observability estimate (§ 3.5 justifies this name)

f(t)‖etAx‖2 − f(qt)‖x‖2 ≤
∫ t

0

‖CeτAx‖2dτ, x ∈ D(A), t ∈ (0, T ′], (4)

holds with f(t)→ 0 as t→ 0+, q ∈ (0, 1) and T ′ > 0, then κT ≤ 1/f((1− q)T ) for
T ∈ (0, T ′], i.e. the fast control cost does not grow more than the inverse of f .

Proof. Let T ≤ T ′. Let T0 = T , Tk+1 = Tk − τk, τk = qk(1 − q)T , k ∈ N. The
series

∑
τk = T defines a disjoint partition ∪(Tk+1, Tk] = (0, T ]. Applying (4) to

x = eTk+1Ay and t = τk yields

f(τk)‖eTkAy‖2 − f(τk+1)‖eTk+1Ay‖2 ≤
∫ Tk

Tk+1

‖CetAy‖2dt, y ∈ D(A), k ∈ N.

Adding these inequalities yields, since the left hand side is a telescoping series,

f(τ0)‖eTAy‖2 − f(τk)‖eTkAy‖2 ≤
∫ T

Tk

‖CetAy‖2dt, y ∈ D(A), k ∈ N.

Taking the limit k → ∞ completes the proof since f(τk) → 0 and the continuous
function t 7→ ‖etAy‖ is bounded on the compact set [0, T ].

2.2. Relative observability on growth subspaces. We assume that there is a
nondecreasing family of semigroup invariant spaces Eλ ⊂ E , λ > 0 (i.e. etAEλ ⊂
Eλ ⊂ Eλ′ , t > 0, λ′ > λ) satisfying the semigroup growth property (namely some
time-decay) with exponent ν ∈ (0, 1) and rate m ≥ 0

‖etAx‖ ≤ m0e
mλνe−λt‖x‖, x ⊥ Eλ, t ∈ (0, T0), λ > 0. (5)

We call them growth spaces. We think of them as spectral subspaces of A, i.e.
σ(AeE⊥λ ) ⊂ {z ∈ σ(A) | Re z ≤ −λ}, and we think of (5) as a spectrally determined
growth property, cf. § 3.6.

We also assume that there is an observation operator C0 ∈ L(D(A),F) satisfying
the bound relative to C on growth spaces with exponent α ∈ (0, 1) and rate a > 0

‖C0x‖2 ≤ a0e
2aλα‖Cx‖2, x ∈ Eλ, λ > 0. (6)

We call C0 a reference operator and the property (6) of C: observability on growth
subspaces relatively to C0. We think of C0 as a simple operator with a good estimate
of fast control like the identity operator, cf. § 3.7.
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2.3. Main result. When the reference operator C0 satisfies the observability cost
estimate with exponent β > 0 and rate b > 0

‖eTAx‖2 ≤ b0e
2b
Tβ

∫ T

0

‖C0e
tAx‖2dt, x ∈ D(A), T ∈ (0, T0), (7)

we claim that C satisfies a similar estimate with exponent1 max
{
β, α

1−α ,
ν

1−ν

}
:

Theorem 2.2. Under the assumptions (5), (6) and (7) with β = α
1−α = ν

1−ν , the
system (A,C, T ) is observable at a cost κT such that 2c = lim supT→0 T

β lnκT <∞.
More precisely, this rate c is bounded in terms of an implicitly defined s > 0:

c ≤ c∗ :=
(

(β + 1)b
a+m

) β+1
β ββ

s
(β+1)2
β

, with s(s+ β + 1)β = (β + 1)β
β2

β+1
b

1
β+1

a+m
. (8)

Moreover, if the admissibility constant in (2) satisfies AdmT → 0 as T → 0, then
there exists T ′ > 0 such that κT ≤ 4a0b0 exp( 2c∗

Tβ
) for T ∈ (0, T ′].

Since c > 0 for some “meaningful” example, cf. § 4.3, there are no lower β such
that lim supT→0 T

β lnκT <∞ under these assumptions.

N.b. the condition AdmT → 0 as T → 0 for the better bound in theorem 2.2
holds for example when C is bounded from E to F , cf. § 3.1.

Corollary 1. Under the same assumptions as theorem 2.2, the cost rate c is bounded
more explicitly in the following cases, with the abbreviation am = a+m:

i. If (6) holds with α = 1
2 (i.e. β = 1) then c∗ = 4b2

(√
am + 2

√
b−
√
am

)−4

.

ii. If (7) holds for any b then c ≤ aβ+1
m (β + 1)β(β+1)β−β

2
.

iii. If (6) holds for any a then c ≤ b.

iv. If b > aβ+1
m (β + 1)β(β+1)β−β

2
then c∗ ≤

(
b

am

) 1
α

(
b(1−α)2

a1−α
m

− (β + 1)α

βα2

)−1

.

N.b. (ii) applies to the identity operator as reference operator C0, cf. § 3.7.
N.b. if (5) holds with m = 0 or for any m > 0 then am can be replaced by a.
Theorem 2.2 for α = 1

2 (i.e. β = 1) and m = 0 is due to Seidman with some less
precise and less simple cost rate bound than (8); e.g., in the case (ii) with β = 1
and m = 0 which applies to the original setting in § 2.4, [46, theorem 2.4] proves2

c ≤ 8a2 instead of c ≤ 4a2, and does not state (i).
With the exponential bound b0e

bT−β in (7) replaced by a polynomial bound b0
T b

(so that (ii) applies), the papers [37, 39] only prove lim supT→0 T
β lnκT < ∞ for

β > α
1−α , hence fall short of the optimal exponent.

2.4. Original example. For A = ∆ the Laplace-Beltrami operator with Dirichlet
boundary condition on a compact smooth connected Riemannian manifold M , E =
F = L2(M), Eλ = the spectral spaces of A (cf. § 3.6), C0 the identity operator, and
C the multiplication by the characteristic function of an open subset Ω 6= ∅ of M ,

1N.b. ν, α or β may be increased so that the match β = α
1−α

= ν
1−ν

is achieved as in the

statement of theorem 2.2.
2Indeed [46, theorem 2.4] states c ≤ 2a2, but correcting the factor 2 into 1

2
in the definition of

d(s) in [46, theorem 2.1] only proves c ≤ 8a2.
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[29, theorem 3] and [24, theorem 14.6] prove (6) with exponent α = 1
2 using the

semiclassical local elliptic Carleman estimates of [28]. In this case (6) writes as∫
M

|v(x)|2dx ≤ a0e
2a
√
λ

∫
Ω

|v(x)|2dx, λ > 0,

for any sum of eigenfunctions v =
∑
µ≤λ ϕµ, −∆ϕµ = µϕµ. Since (5) holds with

m = 0 (cf. § 3.6) and (7) holds with any b > 0 (cf. § 3.7), the corollary 1(ii) of
theorem 2.2 proves that this estimate on sums of eigenfunctions implies the bound
on fast control for any c > 4a2:∫

M

|φ(T, x)|2dx ≤ κT
∫ T

0

∫
Ω

|φ(t, x)|2dx dt, κT = c0e
2c
T , T ∈ [0, T0],

for any solution of the Cauchy problem ∂tφ−∆φ = 0, φ(0, ·) ∈ L2(M).
The exponent α = 1

2 is always sharp in this setting as proved in [24, proposi-
tion 14.9] (cf. also [30, proposition 5.5]), i.e. the above estimate on sums of eigen-
functions implies a > 0. Theorem 5.3 improves this into a ≥ supy∈M dist(y, Ω)/2.
N.b. the cost estimate in [33, theorem 2.1] (cf. also theorem 5.1) combined with
c > 4a2 given by theorem 2.2 only proves a lower bound on a which is worse by a
factor 2. This could mean that “something is lost” in the proof of theorem 2.2.

In this general setting, the cost upper bound lim supT→0 T lnκT < ∞ is due
to Seidman (it is deduced in [46] from the above estimate on sums of eigenfunc-
tions, and the first such upper bound was proved in [44]) and the cost lower bound
lim infT→0 T lnκT ≥ supy∈M dist(y, Ω)2/2 is due to [33] (the first lower bound was
proved in dimension one in [22]). In the Euclidean case, this upper bound was
proved in [19] by global Carleman estimates with singular weights of the Èmanuilov
type (with a less precise lower bound). Under the geometrical optics condition on
Ω, a more precise upper bound is deduced in [33] by the control transmutation
method from the observability of the wave group in [5]: lim supT→0 T lnκT ≤ c∗L2

Ω,
where LΩ is the length of the longest generalized geodesic in M which does not
intersect Ω, and c∗ is determined by a one-dimensional observability estimate for
which c∗ ≤ (2 36

37 )2, improved into c∗ ≤ 3
2 in [49].

2.5. Proof of the main result. We shall use lemma 2.1 in the following form.

Lemma 2.3. If the approximate observability estimate

f(T )‖eTAx‖2 − g(T )‖x‖2 ≤
∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T0], (9)

holds with f(T ) = f0 exp(−2/(d2T )β) and g(T ) = g0 exp(−2/(d1T )β), where f0, g0,
d1 < d2 are positive, then for all d ∈ (0, d2 − d1) there exists T ′ ∈ (0, T0] such that
κT ≤ f−1

0 exp(2/(dT )β) for T ∈ (0, T ′].
Moreover, if g0 ≤ f0 then we may take d = d2 − d1 and T ′ = T0.

Proof. To apply lemma 2.1, we compute the least q such that g(T ) ≤ f(qT ) for
all T ∈ (0, T ′]. We find q = d1

d2
h(T ′) with h(T ′) = (1 + inft∈(0,T ′) t

βdβ1 ln f0
g0

)−
1
β

where the parenthesis is 1 when g0 ≤ f0 and positive when T ′ is small enough. Now
κT ≤ 1

f((1−q)T ) = 1
f0

exp( 1
(d3T )β

) with d3 = d2 − d1h(T ′)→ d2 − d1 as T ′ → 0.

We proceed with the proof of theorem 2.2. For ease of exposition, we start with
the case m = 0 in (5) and complete the general case at the very end of § 2.5.



6 LUC MILLER

Plugging (6) in (7) yields

‖eτAφ‖2 ≤ a0b0e
2aλα+ 2b

τβ

∫ τ

0

‖CetAφ‖2dt, φ ∈ Eλ, τ ∈ (0, T0). (10)

Given x ∈ D(A) and T ∈ (0, T0), we introduce an observation time τ = εT with
ε ∈ (0, 1), a spectral threshold λ defined by (rλ)α = 1

τβ
with r > 0, the orthogonal

projection of x on Eλ denoted xλ, and x⊥λ = x− xλ.
Since Eλ is semigroup invariant, we may apply (10) to φ = e(1−ε)TAxλ and obtain:

‖eTAxλ‖2 ≤
1

4f(T )

∫ T

(1−ε)T
‖CetAxλ‖2dt, f(T ) =

1
4a0b0

exp
(
− 2
T β

a+ brα

rαεβ

)
. (11)

We put the factor 4 in the definition of f because we shall use twice the inequality:

‖y + z‖2 ≤ 2(‖y‖2 + ‖z‖2), y ∈ E , z ∈ E . (12)

Using (12) then (2) yields∫ T

(1−ε)T
‖CetAxλ‖2dt ≤ 2

∫ T

(1−ε)T
‖CetAx‖2dt+ 2 AdmεT ‖e(1−ε)TAx⊥λ ‖2. (13)

Using (12) again, then (11) and finally (13) yields

f(T )‖eTAx‖2 ≤
∫ T

(1−ε)T
‖CetAx‖2dt+ AdmεT ‖e(1−ε)TAx⊥λ ‖2 + 2f(T )‖eTAx⊥λ ‖2.

Applying (5) with m = 0 to x⊥λ yields

f(T )‖eTAx‖2 −m2
0

(
AdmεT e

−2(1−ε)Tλ + 2f(T )e−2Tλ
)
‖x⊥λ ‖2 ≤

∫ T

0

‖CetAx‖2dt.

Since ‖x⊥λ ‖ ≤ ‖x‖, AdmεT ≤ AdmT0 and f(T ) ≤ f(T0), we deduce the approximate
observability estimate

f(T )‖eTAx‖2 −m2
0 (AdmT0 +2f(T0)) e−2(1−ε)Tλ‖x‖2 ≤

∫ T

0

‖CetAx‖2dt. (14)

Recalling that here β = α
1−α so that Tλ = 1/(rεβ/αT β), this proves (9) with

f0 =
1

4a0b0
, g0 = m2

0 (AdmT0 +2f(T0)) , d2 =
ε

(ar−α + b)
1
β

and d1 = ε
1
α

(
r

1− ε

) 1
β

.

As T0 → 0, if AdmT0 → 0 then g0 → 0, hence (9) still holds with g0 = f0 with a
smaller T0. Therefore lemma 2.3 proves the theorem for c∗ = (d2 − d1)−β , for any
ε ∈ (0, 1) and r > 0.

Now, introducing for convenience γ = 1
β and s = ε

1−ε , we are left with maximizing
with respect to r > 0 and s > 0:

da,b(r, s) = d2 − d1 =
ε

(ar−α + b)γ
−
(

r

1− ε

)γ
ε

1
α =

s

s+ 1
rγ
(
h−γ(r)− sγ

)
,

where h(r) = ar
γ
γ+1 + br, since 1

α = 1 + γ, ε = s
s+1 and 1 − α = 1

β+1 = γ
γ+1 . N.b.

da,b(r, s) > 0 for r small enough already proves c <∞.
The optimality condition ∇da,b = 0 writes successively, abbreviating h = h(r),{
γrγ−1 (h−γ − sγ) = rγγh′

hγ+1 ,
1

(s+1)2 (h−γ − sγ) = γsγ

s+1 ,

{
hγ+1 (h−γ − sγ) = rh′ = γ

γ+1h+
(

1− γ
γ+1

)
br,

h = (γsγ(s+ 1) + sγ)−
1
γ = 1

s (γs+ γ + 1)−
1
γ .
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Plugging the last equation (h in terms of s) in the former yields r in terms of s:

br

γ + 1
= hγ+1

(
h−γ − sγ

)
− γ

γ + 1
h = hγ+1

(
h−γ

γ + 1
− sγ

)
=

γ

γ + 1
(sh)γ+1,

hence r = γb−1(γs+ γ + 1)−
γ+1
γ . Plugging this once in h(r) in terms of s yields

γs+ γ + 1 = s(γs+ γ + 1)
γ+1
γ h = s

γ

br
h = sγ

(a
b
r−

1
γ+1 + 1

)
.

Simplifying γs and plugging r in terms of s again yields the equation for s in (8):

sγ(γs+ γ + 1) =
(
γ + 1
a

)γ (
b

γ

) γ2

γ+1

,

which has a unique solution since the L.H.S. increases from 0 to +∞ as s does. We
still denote s this solution. The corresponding r = γb−1(γs + γ + 1)−

γ+1
γ satisfies

r
1
γ+1 =

(
γ
b

) 1
γ+1 (γs+ γ + 1)−

1
γ = sab

γ
γ+1 . The second equation of the first system

traducing the optimality condition ∇da,b = 0 yields:

da,b(r, s) =
s

s+ 1
rγ
(
h−γ(r)− sγ

)
= γsγ+1rγ = γs(γ+1)2

(
a

b

γ

γ + 1

)γ(γ+1)

.

Now c∗ = d−βa,b (r, s) is (8) with m = 0 since 1 + γ = β+1
β , γ+1

γ = β + 1 and
(γ+1)2

γ = (β+1)2

β .
Corollary 1 in the case am = a is deduced by the following arguments.

i. The positive solution of the quadratic equation in (8) is s =
√

1 + 2
√
b

a − 1.

ii. Eliminating b from (8) yields c∗ = (a/(β + 1))β+1β−β
2
(s + β + 1)(β+1)2

, and
the implicit equation yields s→ 0 as b→ 0.

iii. Eliminating a from (8) yields c∗ = b(s + β + 1)β+1/sβ+1, and the implicit
equation yields s→∞ as a→ 0.

iv. The easiest lower bound for s is s+ β + 1 ≥ (β + 1)
1
β β( β

β+1 )2 b
1

(β+1)2

a
1

β+1
, obtained

by plugging s+ β + 1 ≥ s in its implicit equation.
We now complete the general case m 6= 0 in (5). The proof uses (5) only once:

in the equation before (14). We may divide this equation by emλ
α

and keep the
same right hand side since e−mλ

α ≤ 1. This yields (14) with f(T ) replaced by
f(T )e−mλ

α

. This amounts to replacing a by a+m in the definition of d2 after (14)
and therefore in the conclusion (8).

3. Comments.

3.1. Admissibility. Any C ∈ L(E ,F) satisfies the admissibility condition (2) with
AdmT = T‖C‖2. The more general setting in § 2.1 is canonical (cf. [50]) and re-
quired in many P.D.E. problems, e.g. when the heat flux is observed on the bound-
ary rather than an open subset of the domain. Although it should be sufficient for
any P.D.E. problems, it might be useful to circumvent the admissibility assumption:

Lemma 3.1. The conclusion 2c = lim supT→0 T
β lnκT ≤ 2c∗ of theorem 2.2 is still

valid if we replace the assumption that C ∈ L(D(A),F) satisfies the admissibility
condition (2) by the following time smoothing effect assumption:

∀x ∈ E , ∀t > 0, etAx ∈ D(A), and lim sup
t→0

tβ ln‖AetA‖ = 0. (15)
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Proof. In the proof of theorem 2.2, the admissibility condition (2) is only used once,
for x = x⊥λ orthogonal to the growth space Eλ, in this manner:∫ T

(1−ε)T
‖CetAx‖2dt ≤ AdmT0 m

2
0e

2mλνe−2(1−ε)Tλ‖x‖2, x ⊥ Eλ, T ∈ (0, T0), (16)

and this only affects the definition of the function g(T ) = g0 exp(−2/(d1T )β) used
in (9). Recall that ε ∈ (0, 1) and r > 0 have been fixed (in order to maximize da,b).
We shall prove, for any δ ∈ (0, 1) small enough, any g1 > 0 and some smaller T0,∫ T

(1−ε)T
‖CeτAx‖2dτ ≤ g1e

2mλνe−2(1−(1+δ)ε)Tλ‖x‖2, x ⊥ Eλ, T ∈ (0, T0). (17)

Indeed replacing (16) by (17), (9) still holds with g0 and d1 replaced by g1 and

d1,δ = ε
1
α

(
r

1−(1+δ)ε

) 1
β

. Since d1,δ → d1 as δ → 0 this will not affect the range of d
obtained by applying lemma 2.3, nor the conclusion of theorem 2.2.

With the graph norm onD(A), C ∈ L(D(A),F) means ‖Cx‖ ≤ ‖C‖(‖x‖+‖Ax‖).
We only need to prove (17) with C replaced by A since the proof of (17) with C
replaced by the identity is the same, only shorter. We use the small parameter
δ ∈ (0, 1) to decompose the lower integration bound in (17) in this geometric way:
(1− ε)T = (1− (1 + δ)ε)T + (1− δ)δεT + δ2εT = τ1 + τ2 + τ3. According to (15),
τβ ln‖AeτA‖ ≤ δ2β+2, τ ∈ (0, T0), for a smaller T0. This with τ = τ3 and (5) yield

‖AetAx‖ ≤ e
δ2β+2

τ
β
3 ‖e(t−τ3)Ax‖ ≤ e

δ2

(εT )βmλe
−(t−τ3)λ‖x‖ ≤ mλe

δ2

(εT )β e−(τ1+τ2)λ‖x‖,

for all t ∈ ((1 − ε)T, T0), where mλ = m0e
mλν . Recalling τ2λ = (1−δ)δε

rεβ/αTβ
and

bounding the length of the integration interval by T0, the proof of (17) with C
replaced by A now reduces to

T0m
2
0e

2δ2

(εT )β e−2τ2λ = T0m
2
0e
−2δcδ
Tβ ≤ g1, T ∈ (0, T0),

where cδ → ε/(rεβ/α) > 0 as δ → 0. This does hold for T0 ≤ g1/m
2 and any δ

small enough for cδ to be positive.

The idea of dispensing with the admissibility assumption is due to Marius Tuc-
snak and Gerald Tenenbaum in the case where A is a nonpositive self-adjoint op-
erator with an orthonormal basis of eigenfunctions. Indeed, that A is nonpositive
self-adjoint implies that A generates a bounded analytic semigroup, which is equiv-
alent to the usual time smoothing effect, supt>0‖tAetA‖ < ∞, which implies the
weaker effect (15) assumed in lemma 3.1. N.b. although A in § 4.2 for γ < 1/2
does not generate an analytic semigroup, it is proved in [23, theorem 4.2] that
supt>0‖t

1
2γAetA‖ <∞, which also implies (15).

3.2. Controllability cost. From the definition of κT in (3), we have, for T ′ < T ,
κT ≤ ‖e(T−T ′)A‖2κT ′ . This justifies our claim in § 2.1 that

√
κT does not grow

more than the semigroup as T → +∞ and does not increase when the semigroup is
contractive. Moreover, if κt ≤ g(t), t ∈ (0, T ′], g nonincreasing, then κt ≤ M2

0 g(t),
t ∈ (0, T ], with M0 = sups∈(0,T−T ′)‖esA‖ < ∞. This justifies that we restrict to
some bounded intervals (0, T ′] in the statements of our results. When the semigroup
is bounded by M = supt≥0‖etA‖, the cost bound supT>T ′ κT ≤ M2κT ′ improves
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into the decay: supT>T ′ TκT ≤ 2M2T ′κT ′ . Indeed, let τk = kT ′, k ∈ N, and
n = bT/T ′c, so that τn ≤ T < τn+1. Since ‖eTAx‖ ≤M‖eτkAx‖ for k ≤ n,

n‖eTAx‖2 ≤M2κT ′
n∑
k=1

∫ τk

τk−1

‖CetAx‖2dt = M2κT ′

∫ τn

0

‖CetAx‖2dt.

Since τn ≤ T ≤ τ2n, the proof of κT ≤M2κT ′/n ≤M2κT ′(2T ′/T ) is completed.
The dual problem to the final-observability of (1) is the null-controllability of

ḟ(t) = A∗f(t) +Bu(t), f(0) = f0 ∈ E , t ≥ 0, (18)

with input u ∈ L2([0, T ],F) and control operator B = C∗ ∈ L(F ,D(A∗)′) (A∗

denotes the adjoint of A and D(A∗)′ denotes the dual space of D(A∗) in E).
Since C satisfies the admissibility condition (2), B satisfies ‖

∫ T
0
etA

∗
Bu(t)dt‖2 ≤

KT

∫ T
0
‖u(t)‖2dt, and the solution of (18) is f(T ) = eTA

∗
f0 +

∫ T
0
e(T−t)A∗Bu(t)dt.

More precisely, if (A,C, T ) is observable at cost κT then, for all f0, there is a u such
that f(T ) = 0 and

∫ T
0
‖u(t)‖2dt ≤ κT ‖f0‖2 (cf. [15]).

The study of the cost of fast controls was initiated by Seidman in [44] with a
result on the heat equation obtained by Russell’s method in [42]. We refer to the
surveys [45, 38] and the more recent paper [49]. An application to reachability is
given in § 3.4.

3.3. Integrated observability estimate. Lemma 2.1 can be seen as the discrete
version of the following lemma which has been used with f(t) = exp(−c/t) when
proving observability by some parabolic global Carleman estimates (cf. e.g. [20, 19]).

Lemma 3.2. In the setting of § 2.1, if the integrated observability estimate∫ T

0

f(t)‖etAx‖2dt ≤
∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T0), (19)

holds with T0 > 0 and f an increasing function such that f(t) → 0 as t → 0+,
then, for any ε ∈ (0, 1), κT ≤ MεT /(εTf((1 − ε)T )), T ∈ (0, T0), with MεT ≤
MT := supt∈[0,T ]‖etA‖2 ≤ MT0 < ∞, i.e. the growth of the fast control cost is
almost bounded by the inverse of f .

Conversely, if (3) holds for T ∈ (0, T0) then (19) holds with f(t) = 1/(T0κt).

Proof. The implication results from ‖eTAx‖2 = ‖e(T−t)AetAx‖2 ≤ MT ‖etAx‖2 and
f(t) ≤ f(T ) for t ∈ (0, T ): for ε ∈ (0, 1),

εTf((1− ε)T )‖eTAx‖2 ≤MεT

∫ T

T (1−ε)
f(t)‖etA‖2dt ≤MεT

∫ T

0

‖CetA‖2dt.

Writting (3) as κ−1
τ ‖eτAx‖2 ≤

∫ τ
0
‖CetAx‖2dt, the converse results from integrating:∫ T

0

∫ τ

0

‖CetAx‖2dtdτ ≤
∫ T

0

∫ T

0

‖CetAx‖2dtdτ = T

∫ T

0

‖CetAx‖2dt.

3.4. Reachability. As the input u varies, the final state f(T ) of (18) spans the
set of states which are reachable from f0 in time T , denoted R(T, f0). Assuming
(A,C, T ) is observable for all T > 0, the usual duality in § 3.2 implies that this
reachability set R = R(T, f0) does not depend on T and f0 (by an argument due
to Seidman in [43], cf. [38, footnote 7]) and satisfies etA(E) ⊂ R, t > 0.
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The following lemma provides further information on the reachability set when
a cost estimate as in theorem 2.2 is available.

Lemma 3.3. In the setting of § 2.1, assume A is self-adjoint and σ(A) ⊂ (−∞, λ1],
and consider the fractional powers Aβ = −(−A+ λ1)β, β > 0.

For all exponents β > 0, α = β
β+1 , and rates b > 0, c > b(β+ 1), a > (bβ)

1
β+1 /α,

for all T0 > 0, there exists c0 > 0 such that

‖eaAαx‖2 ≤ c0e
2c
Tβ

∫ T

0

e−
2b
tβ ‖etAx‖2dt, x ∈ D(A), T ∈ (0, T0). (20)

If (A,C, T ) is observable at a cost κT such that 2b0 = lim supT→0 T
β lnκT <∞,

then the reachability set satisfies eaAα(E) ⊂ R for α = β
β+1 and a > (b0β)

1
β+1 /α.

Proof. We first deduce the reachability statement from the previous one. For any
b > b0, (3) holds with κT = exp(2b/T β), T ∈ (0, T0), for T0 small enough. The
converse in lemma 3.2 proves that the integral in (20) is bounded by some multiple
of the integral in (3). Plugging this in (20) yields a c1 > 0 such that

‖eaAαx‖2 ≤ c1e
2c
Tβ

∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T0).

The same duality argument (cf. [15, (3.22)]) deduces eaAα(E) ⊂ R(T, 0) = R.
Given x ∈ D(A) and T ∈ (0, T0), using the spectral measure dEx(λ) of A for x:

‖eaAαx‖2 =
∫
σ(A)

e−2a(λ1−λ)αdEx,

∫ T

0

f(t)‖etAx‖2dt =
∫ T

0

∫
σ(A)

f(t)e2tλdExdt.

Hence (20) reduces to
∫ T

0
e−2jλ(t)dt ≥ 1

c0
e−

2c
Tβ e−2a(λ1+λ)α for λ ≥ −λ1, and further

to (by changing λ into λ− λ1, with c1 = c0 min
{

1, e2T0λ1
}

):∫ T

0

e−2jλ(t)dt ≥ 1
c1
e−

2c
Tβ e−2aλα , T ∈ (0, T0), λ ≥ 0, (21)

where jλ(t) =
b

tβ
+ tλ satisfies jλ(t) ≥ jλ(tλ) =

tλλ

α
, tλ =

(
bβ

λ

) 1
β+1

, λ > 0.

On the one hand, if tλ < T , then∫ T

0

e−2jλ(t)dt ≥
∫ tλ

δtλ

e−2jλ(t)dt ≥ (1− δ)tλe−2jλ(δtλ), δ ∈ (0, 1),

with jλ(δtλ) =
(

1
βδβ

+ δ

)
tλλ = aδλ

α, aδ = (bβ)
1

β+1

(
1
βδβ

+ δ

)
δ→1−−−→ (bβ)

1
β+1

α
,

hence (21) holds for c = 0 and a > (bβ)
1

β+1

α by choosing δ such that a > aδ.
On the other hand, if λ ≤ bβ

Tβ+1 then∫ T

0

e−2jλ(t)dt ≥
∫ T

δT

e−2jλ(t)dt ≥ (1− δ)Te−2jλ(δT ), δ ∈ (0, 1),

with jλ(δT ) ≤ b

(δT )β
+ (δT )

bβ

T β+1
=

cδ
T β

, cδ = b

(
1
δβ

+ δβ

)
δ→1−−−→ b(β + 1),

hence (21) holds for a = 0 and c > b(β + 1) by choosing δ such that c > cδ.
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Concerning the heat semigroup in § 2.4, as a corollary to the cost upper bound
in § 3.2 under the geometrical optics condition, this lemma with β = 1 proves
that e−a

√
−∆φ0 is reachable for a >

√
3LΩ, φ0 ∈ L2(M), cf. [38, corollary 10]. In

dimension one a better result is due to Fattorini and Russell, cf. [18, (3.19)]: if M
is a segment of length L controlled from one endpoint then e−a

√
−∆φ0 is reachable

for all a > L, φ0 ∈ L2(M) (this cannot be proved by the same method for a < L,
cf. [18, (3.20)]). Whether “the optimal” rate a such that e−a

√
−∆(L2(M)) ⊂ R can

be expressed geometrically in the general setting of § 2.4 is an open question, e.g.
is it supy∈M dist(y, Ω)?

3.5. Approximate observability. The following lemma clarifies the connection
of (4) in lemma 2.1 to approximate controllability, and therefore to [46].

Lemma 3.4. Given the time T > 0, the cost κ > 0 and the approximation rate
ε > 0, the following two properties are equivalent.

i. Approximate observability of (A,C, T ):

‖eTAx‖2 ≤ κ
∫ T

0

‖CetAx‖2dt+ ε‖x‖2, x ∈ D(A).

ii. Approximate null-controllability of (18):

∀f0 ∈ E , ∃u ∈ L2([0, T ],F),
1
κ

∫ T

0

‖u(t)‖2dt+
1
ε
‖f(T )‖2 ≤ ‖f0‖2.

Proof. Consider the strictly convex C1 functional J defined on E by density as

J(x) =
κ

2

∫ T

0

‖CetAx‖2dt+
ε

2
‖x‖2 + 〈eTAx, f0〉, x ∈ D(A).

Property (i) implies J(x) ≥ 1
2‖e

TAx‖2 + 〈eTAx, f0〉, hence J is coercive. Therefore
J has a unique minimizer ψ0 ∈ E , i.e. J(ψ0) = infx∈E J(x), and

0 = ∇J(ψ0) = κ

∫ T

0

etA
∗
BCetAψ0dt+ εψ0 + eTA

∗
f0.

This equation also says that the input u(t) = κCetAψ0 in (18) yields the final state
f(T ) = −εψ0. In terms of these u and f(T ), 〈∇J(ψ0), ψ0〉 = 0 writes

1
κ

∫ T

0

‖u(t)‖2dt+
1
ε
‖f(T )‖2 = κ

∫ T

0

‖CetAψ0‖2dt+ ε‖ψ0‖2 = −〈eTAψ0, f0〉. (22)

Plugging this in property (i) yields ‖eTAψ0‖2 ≤ −〈eTAψ0, f0〉 ≤ ‖eTAψ0‖‖f0‖.
Hence ‖eTAψ0‖ ≤ ‖f0‖. This allows to bound (22) as in property (ii).

Conversely, taking the duality product of x ∈ D(A) with a final state of (18)
f(T ) =

∫ T
0
etA

∗
Bu(t)dt+eTA

∗
f0 yields 〈f0, e

TAx〉 = −
∫ T

0
〈u,CeTAx〉dt+〈f(T ), x〉.

Using the Cauchy-Schwarz inequality in E , L2(0, T ) and R2 yields

|〈f0, e
TAx〉|2 ≤

(
1
κ

∫ T

0

‖u(t)‖2dt+
1
ε
‖f(T )‖2

)(
κ

∫ T

0

‖CetAx‖2dt+ ε‖x‖2
)
.

Choosing f0 = eTAx completes the proof that property (ii) implies property (i).
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3.6. Growth condition, normal semigroups and spectral spaces. If the
growth spaces are closed and satisfy sup Reσ(AeE⊥λ ) = −λ, then the growth condi-
tion (5) for a given λ > 0 as t→∞ says that the restriction of the semigroup to E⊥λ
satisfies the spectral bound equal growth bound condition (this condition is satisfied
by any eventually norm-continuous semigroup, e.g. differentiable semigroup, e.g. A
is self-adjoint and bounded from above). Yet the growth bound of this restricted
semigroup for small t may get worse as λ → ∞. This justifies allowing m 6= 0 in
the growth condition (5). E.g. the growth condition for some non-selfadjoint ellip-
tic operators A stated in [27, Proposition 4.12], which comes naturally from the
Laplace representation of the semigroup and resolvent estimates, is precisely of the
form (5) for some m > 0. When A is only mildly non-normal as in § 4.2, the loss is
only polynomial in λ, hence (5) holds for any m > 0.

On the contrary, for a normal semigroup (i.e. A is normal and the real part of its
spectrum is bounded from above, e.g. A is negative self-adjoint as in [37]) the natural
growth spaces are its spectral spaces and (5) always holds with m0 = 1 and m = 0.
Indeed, it has a spectral decomposition E (a.k.a. projection-valued measure) which
commutes with any operator which commutes with A, defines spectral projections
Eλ = E({z ∈ σ(A) | Re z > −λ}) and spectral spaces Eλ = Eλ(E), and provides
the integral representation etA =

∫
σ(A)

etzdE(z) hence this growth condition (5).
N.b. for unitary groups (i.e. A is skew-adjoint, e.g. Schrödinger or wave equations)
Eλ = Eλ(E) = E , λ > 0, so that (5) is trivial but (6) is never satisfied in applications.

If there is an orthonormal basis {en} of E such that −Aen = λnen, then the
spectral spaces are just spanned by linear combinations of normalized eigenfunctions
Eλ = Span {en}λn<λ and (6) is an estimate on sums of eigenfunctions of A.

For A = ∆ on E = L2(Rd), the spectral decomposition is the Fourier transform:
̂f(−∆)φ(ξ) = f(|ξ|2)φ̂(ξ), φ ∈ L2(Rd), thus φ ∈ Eλ just means φ̂(ξ) = 0 for
|ξ|2 > λ, i.e. φ is the restriction to the real axis of an entire function φ̃ such that
|φ̃(z)| ≤ ce

√
λ|Im z| by the Paley-Wiener theorem. When C0 is the identity operator,

C is the multiplication by the characteristic function of the exterior of a ball and
F = E , [34] proves (6) with exponent α = 1

2 by Carleman estimates as in § 2.4. It is
an open problem to obtain an explicit bound on the rate a in (6), e.g. by complex
analysis.

3.7. Reference operator. Any A satisfies the fast control cost estimate

‖eTAx‖2 ≤ MT

T

∫ T

0

‖etAx‖2dt, x ∈ D(A), T ∈ (0, T0), (23)

with MT = supt∈[0,T ]‖etA‖2 ≤MT0 <∞. Thus the cost estimate (7) holds for any
exponent β > 0 and rate b > 0 when C0 is the identity operator.

For a system of coupled P.D.E., C0 can be the observation of a single component
as in § 4.2, e.g. the operator CM in [39]: for this reference operator, (5) with m = 0,
(6), and (7) with any b > 0, are stated in this form in [39, Propositions 4, 3, 2]
respectively. The assumptions (5) with m = 0 and (6) are called [H] in the abstract
framework of [46].

3.8. “Converse” to the main result. The following lemma is a very partial
converse to theorem 2.2: only for sequences of eigenfunctions of A and C0 = id.
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Lemma 3.5. Assume that (A,C) satisfies the observability cost estimate with ex-
ponent β > 0 and rate b > 0

‖eTAx‖2 ≤ b0e
2b
Tβ

∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T0). (24)

Any sequence (en) in D(A) such that −Aen = λnen and limλn = +∞, must satisfy

‖en‖2 ≤
b0

2λn
e2aλαn‖Cen‖2, α =

β

β + 1
, a =

β + 1
βα

b
1

β+1 , λn large enough. (25)

In particular, if the sequence satisfies for some exponent α > 0 and rate a > 0:

‖en‖2 ≥ a0e
2aλαn‖Cen‖2, λn large enough, (26)

then the observability cost in (3) satisfies lim supT→0 T
β lnκT > 0 with β = α

1−α .

Proof. Applying (24) to x = en yields e−2Tλn‖en‖2 ≤ b0e
2b
Tβ

∫ T

0

‖Cen‖2e−2tλndt,

hence ‖en‖2 ≤
b0

2λn
e2h(T )‖Cen‖2, with h(T ) =

b

T β
+ Tλn. Minimizing h yields

h(Tn) = β+1
βα b

1
β+1λαn at Tn =

(
βb
λn

) 1
β+1

with Tn < T0 for λn large enough.
We prove the last statement of lemma 3.5 by contradiction. If the observability

cost in (3) satisfies lim supT→0 T
β lnκT = 0 with β = α

1−α , then (24) holds for any
b > 0 with T0 small enough, hence (25) holds for any a > 0, which refutes (26).

4. Applications.

4.1. Anomalous diffusions. LetM be a smooth connected complete d-dimensional
Riemannian manifold with metric g and boundary ∂M . When ∂M 6= ∅, M denotes
the interior and M = M ∪ ∂M . Let ∆ denote the Laplace-Beltrami operator on
L2(M) with domain D(∆) = H1

0 (M) ∩H2(M) defined by g. N.b. the results are
already interesting when (M, g) is a smooth connected domain of the Euclidean
space Rd, so that ∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d
.

In this application, the state and input spaces are E = F = L2(M), the growth
spaces are the spectral spaces of § 3.6, the reference operator C0 is the identity
operator and the observation operator C is the multiplication by the characteristic
function χΩ of an open subset Ω 6= ∅ of M , i.e. it truncates the input function
outside the control region Ω. If M is not compact, assume that Ω is the exterior of
a compact set K such that K ∩ Ω ∩ ∂M = ∅.

For A = ∆, (6) holds with exponent α = 1
2 , cf. § 2.4 for compact M , and [34]

otherwise. Hence for A = −(−∆)γ , (6) holds with exponent α = 1
2γ . Applying

theorem 2.2 improves on [37, theorem 2]:

Theorem 4.1. For all γ > 1/2, the anomalous diffusion:

∂tφ+ (−∆)γφ = χΩu, φ(0) = φ0 ∈ L2(M), u ∈ L2([0, T ]×M),

is null-controllable in any time T > 0. Moreover the cost κT (cf. § 3.2) satisfies
lim supT→0 T

β lnκT <∞ with β = 1
2γ−1 .

When the manifold M is the whole Euclidean space Rd, the fractional Laplacian
−(−∆)γ with γ ∈ (0, 1] generates the rotationally invariant 2γ-stable Lévy process.
For γ = 1 this process is the Brownian motion Bt on Rd, and for γ < 1 it is
subordinated to Bt by a strictly γ-stable subordinator Tt, so that it writes BTt . The
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convolution kernels of the corresponding semigroups are the rotationally invariant
Lévy stable probability distributions, in particular the Gaussian distribution for
γ = 1 and the Cauchy distribution for γ = 1/2. For γ < 1 these distributions have
“heavy tails”, i.e. far away they decrease like a power as opposed to the exponential
decrease found in the Gaussian, which accounts for the “superdiffusive” behavior of
the semigroup. The more restrictive range γ ∈ (1/2, 1) is the most widely used to
model anomalously fast diffusions, and it turns out that the controllability result
theorem 4.1 applies to this range of fractional superdiffusions only.

When the manifold M is a domain of the Euclidean space Rd, the Markov pro-
cess generated by the fractional Dirichlet Laplacian −(−∆)γ with γ ∈ (0, 1] can
be obtained by killing the Brownian motion on Rd upon exiting the domain then
subordinating the killed Brownian motion by the subordinator Tt introduced above.

4.2. Structural damping. Let A be a positive self-adjoint and boundedly invert-
ible operator on another Hilbert spaceH (with norm still denoted ‖·‖). LetD(A) de-
note its domain with the norm ζ 7→ ‖Aζ‖. Since −A is normal, we may consider its
spectral decomposition H, its spectral projections Hµ = H({z ∈ σ(A) | Re z < µ})
and spectral spaces Hµ = Hµ(H). (cf. § 3.6). We consider an observation operator
C in L(D(A),F) satisfying observability on Hµ relative to the identity operator:

‖z‖2 ≤ d0e
2dµδ‖Cz‖2, z ∈ Hµ, µ > 0, (27)

and the corresponding control operator B = C∗ ∈ L(F ,D(A)′) (D(A)′ denotes the
dual space of D(A) in H).

To give a precise meaning to the solution of the structurally damped system

ζ̈(t) + ρA2γ ζ̇(t) +A2ζ(t) = Bu(t),

ζ(0) = ζ0 ∈ D(A), ζ̇(0) = ζ1 ∈ H, u ∈ L2([0, T ],F),
(28)

with structural dissipation power γ ∈ (0, 1), we write it as a first order system.
The state space is E = D(A)×H. The semigroup generator A is

A =
(

0 I
−A2 −ρA2γ

)
, D(A) =

{
(z0, z1) ∈ E | Az0 + ρA2γ−1z1 ∈ D(A)

}
.

It inherits from −A the necessary and sufficient properties of Lumer-Phillips for
generating a contraction semigroup.

The observation and control operators are the projection C0 : E → H defined by
C0(z0, z1) = z1, C = CC0, and B defined in § 3.2. We assume that C is admissible
for the semigroup generated by A, i.e. (2). Since the cost estimate for C0 given in
[4] is polynomial in 1/T , (7) holds for any β > 0 and b > 0.

For µ > 0 and z = (z0, z1) ∈ H ×H, we denote Hz0,z1(µ) = 〈H(µ)z0, z1〉 where
H is the spectral decomposition of A. We define the matrix valued function M and
the positive Hermitian matrix valued measure Ez,z by

M(µ) =
(

0 −1
µ2 ρµ2γ

)
, Ez,z =

(
Hz0,z0 Hz0,z1

Hz1,z0 Hz1,z1

)
.

As proved in [36, Lemma 3], the roots λ± = r±s of Pµ(λ) = det(M(µ)−λI) satisfy

min {Reλ+,Reλ−} ≥ min
{
ρ
2 ,

1
ρ

}
µ2 min{γ,1−γ} for µ ≥ 1. Therefore we define the

growth spaces as Eλ = Hµ×Hµ with λ = min
{
ρ
2 ,

1
ρ

}
µ2 min{γ,1−γ}. Plugging in the
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spectral representation 〈etAz, z〉 =
∫
σ(A)

e−tM(µ)dEz,z(µ) the explicit formula

e−tM(µ) = e−tr (t shc(st)M(µ) + (cosh(st) + rt shc(st)) I) , t > 0,

(where the cardinal hyperbolic sine function is the continuous and even function de-
fined by shc(0) = 1 and shc(t) = sinh(t)/t for t 6= 0) proves the growth condition (5)
with any m > 0 (indeed the loss µ2 is only polynomial in λ instead of exponential).

For this choice of growth spaces, (27) implies the relative observability (6) with
exponent α = δ

2 min{γ,1−γ} and rate a = d

min{ ρ2 , 1ρ}α
.

Applying theorem 2.2 and corollary 1(ii) improves on [36, theorem 1]:

Theorem 4.2. Recall that δ and d are the exponent and rate in the main assumption
(27). For all ρ > 0 and γ ∈ (δ/2, 1 − δ/2), for all ζ0 and ζ1, there is an input u
such that the solution ζ of (28) satisfies ζ(T ) = ζ̇(T ) = 0 and the cost estimate:∫ T

0

‖u(t)‖2dt ≤ b0 exp
(

2b
T β

)(
‖Aζ0‖2 + ‖ζ1‖2

)
, ζ0 ∈ D(A), ζ1 ∈ H, T small,

with β =
(

2
δ

min {γ, 1− γ} − 1
)−1

, and any b >
dβ+1

min
{
ρ
2 ,

1
ρ

}β (β + 1)β(β+1)

ββ2 .

We refer to [10, 26] for the motivation of the abstract model (28). The main
application is to the plate equation with square root damping and interior control
in Ω with hinged boundary conditions on a manifold M , in the framework of § 4.1:

ζ̈ − ρ∆ζ̇ + ∆2ζ = χΩu on [0, T ]×M, ζ = ∆ζ = 0 on [0, T ]× ∂M,

ζ(0) = ζ0 ∈ H2(M) ∩H1
0 (M), ζ̇(0) = ζ1 ∈ L2(M), u ∈ L2([0, T ]×M).

(29)

Applying theorem 4.2 instead of [36, theorem 1] to A = −∆ with δ = γ = 1
2 ,

hence β = 1, improves on the value of β in the first part of [36, theorem 2] (cf.
also [3]). Under the geometrical optics condition in [5] that the length LΩ of the
longest generalized geodesic in M which does not intersect Ω is not ∞, the second
part of [36, theorem 2] estimates the cost rate: for all ρ ∈ (0, 2), the control cost of
(29) satisfies the estimate in theorem 4.2 with β = 1 and any b > b1L

2
Ω for some b0

and b1 which do not depend on Ω and ρ (cf. [36, note added in proof]), hence e.g.
(cf. [32], [16, Appendix]) the minimal null-control input u converges to the minimal
null-control input for the undamped plate equation as ρ→ 0.

4.3. Diffusion in a potential well. We consider a power k ∈ N∗ and the poten-
tial well V (x) = |x|2k, x ∈ Rd. The Schrödinger operator A = ∆− V with domain
D(A) =

{
φ ∈ H2(Rd) |

∫
|V φ|2 <∞

}
is negative self-adjoint and has compact re-

solvent. Let χΓ denote the multiplication by the characteristic function of any non
empty open cone Γ =

{
x ∈ Rd | |x| > r0, x/|x| ∈ Ω0

}
, where r0 ≥ 0 and Ω0 is an

open subset of the unit sphere.
In this application, the state and input spaces are E = F = L2(Rd), the growth

spaces are the spectral spaces of § 3.6, the reference operator C0 is the identity
operator and the observation operator C is the multiplication by χΓ as in § 4.1, i.e.
it truncates the input function outside the control region Γ.

In [40], (6) with exponent α = 1
2 (1 + 1

k ) is proved and some radial eigenfunctions
concentrating at some “equator” such that (26) holds are exhibited (cf. [40, § 4.2.2])
allowing to deduce from theorem 2.2 and lemma 3.5:



16 LUC MILLER

Theorem 4.3. For all k > 1, the diffusion in the potential well V (x) = |x|2k:

∂tφ−∆φ+ V φ = χΓu, φ(0) = φ0 ∈ L2(Rd), u ∈ L2([0, T ]× Rd),

is null-controllable in any time T > 0. Moreover the cost κT (cf. § 3.2) satisfies:
κ = lim supT→0 T

β lnκT <∞ with β = 1 + 2
k−1 .

If there is a vector space of dimension 2 in Rd which does not intersect the closure
Ω0 of the subset Ω0 of the unit sphere defining the cone Γ then κ 6= 0.

When Γ is a bounded set instead of a cone, some radial eigenfunctions such that
(25) fails are exhibited in [40, § 4.2.3] allowing to deduce from lemma 3.5 that
κ = lim supT→0 T

β lnκT = +∞ with β = 1 + 2
k−1 . Whether null-controllability

from bounded sets Γ holds for k > 1 remains open.
As in § 4.1, the semigroup considered here is a well known model of diffusion. It

can be interpreted as a Brownian diffusion on Rd killed at the rate V .

5. Lower bounds for the cost and spectral rates. The setting of this inde-
pendent section is slightly more general than in § 2.4. As in § 4.1, M is a smooth
complete Riemannian manifold and ∆ is the Laplace-Beltrami operator with Dirich-
let boundary condition onH = L2(M) which is both the state space E and the input
space F . In this section we denote in the same way an open subset of M , its charac-
teristic function and the multiplication by this function which is a bounded operator
on H. With this notation, the observation operator is C = Ω where Ω 6= ∅ is an
open subset of M . In this section A : D(A) ⊂ H → H still denotes the generator of
a C0-semigroup (etA)t≥0 on H.

The main assumption in this section is the following L2 Gaussian estimate:
for all open subset ω ⊂M and d < dist(Ω, ω) := inf

(x,y)∈Ω×ω
dist(x, y),

‖ΩetAω‖ ≤ d0e
− d2

4t ‖ω‖, t ∈ [0, T0]. (30)

The lower bounds in this section are given in terms of the following distance:

dΩ = sup
y∈M

dist( Ω, y), (31)

i.e. the furthest from Ω a point of M can be. A simple example to keep in mind
was considered at the end of § 3.6: M = Rd, A = ∆, Ω is the exterior of a ball,
hence dΩ in (31) is the radius of this ball.

In the particular case of the heat semigroup on a compact manifold considered in
§ 2.4, Gaussian estimates were already the main tool in the geometric lower bound
for the cost rate in [33, theorem 2.1] and the proof that the spectral rate is positive
in [24, proposition 14.9] and [30, proposition 5.5]. But these proofs used pointwise
Gaussian estimates and Weyl’s asymptotics for eigenvalues.

The L2 Gaussian estimate (30) provides simpler proofs where A need not even
have eigenvalues. As shown in § 5.1, it does not only apply to A = ∆ but also e.g.
to the linear Ginzburg-Landau equation on M complete or compact with Dirichlet
boundary condition, real smooth potential V bounded from below and real ρ,

(1 + ρi)∂tφ+ (−∆ + V )φ = 0, t ≥ 0. (32)

N.b. [35] gives an upper bound of the cost rate for this equation in terms of the
length of the longest generalized geodesic in M which does not intersect Ω.



A DIRECT LEBEAU-ROBBIANO STRATEGY 17

5.1. Semigroups satisfying L2 Gaussian estimates. When A is a nonpositive
self-adjoint operator, the semigroup satisfies this stronger L2 Gaussian estimate

‖ΩezAω‖L(H) ≤ e−
d2
4 Re 1

z , Re z > 0, Ω ⊂M, ω ⊂M, (33)

where d = dist(Ω, ω), ω and Ω are open subsets. Following the theme of [9], this is
an easy consequence of the propagation of the support with speed less than one for
the (even) solution of the corresponding wave equation:

Ω cos(t
√
−A)ω = 0, t ∈ (0, d), Ω ⊂M, ω ⊂M. (34)

The key idea is to represent the semigroup in terms of the wave group

ezA =
1√
4πz

∫ +∞

−∞
e−

s2
4z cos(s

√
−A)ds, Re z > 0. (35)

Indeed, (33) results from plugging (34) in (35) and taking 1/t = Re 1/z in

1√
4πt

∫
|s|≥d

e−
s2
4t ds ≤ e− d

2
4t , t > 0.

This proof can be found e.g. in [48, chapter 6, (2.22)] for A = ∆, and in [13, theorem
3.4]. N.b. the converse holds using the Paley-Wiener theorem, i.e. (33) implies (34).
Cf. [13, § 3] for a deeper study of these estimates and their relationship.

The transmutation formula (35) results directly from the integral representation
of functions of A via spectral measures and the Fourier transform. In this context
of short time asymptotics of diffusion semigroups, it was first used by Kannai in
[25]. The control transmutation method in [35] is based on analogous formulas for
both the controlled solution and the input.

The L2 Gaussian estimates (33) for real z are known as Davies-Gaffney estimates.
Indeed, Gaffney’s argument in [21] used to prove such estimates without (34) in [14]
needs very little smoothness, cf. [41, § 2] and [13, theorem 3.3].

If A satisfies (33) then (1 + iρ)−1(A + λ0I), with ρ ∈ R and λ0 ≥ 0 satisfies
(30) with d0 = eT0λ0 (with d0 = 1 if λ0 ≤ 0). In particular, for a potential
V ∈ C∞(M) such that V (x) ≥ −λ0, for all x ∈ M , A = ∆ − V − λ0 (defined by
Friedrichs extension from C∞c (M)) satisfies (34), hence (33), therefore the generator
(1 + iρ)−1(∆ − V ) satisfies (30) (n.b. [13, theorem 3.3] proves that A still satisfies
(33) for V ∈ L1

loc(M) on a complete M). Hence theorems 5.1, 5.2 and 5.3 apply to
the linear Ginzburg-Landau equation (32).

When it is not assumed that A is self-adjoint, but only that it is the generator of
a cosine operator function Cos, then the transmutation formula (35) holds with s 7→
Cos(s) replacing s 7→ cos(s

√
−A), cf. e.g. [2, Weierstrass formula (3.102)], [47, 8, 17].

Since a cosine operator function satisfies a growth bound ‖Cos(s)‖L(H) ≤ M0e
Ms,

s ≥ 0, the finite propagation speed (34) for Cos implies the weaker L2 Gaussian
estimate (30) where t is bounded and the limit value d = dist(Ω, ω) is excluded.

E.g. theorem 5.1 still applies to the diffusion semigroup with generator,

Aφ =
d∑

j,k=1

∂xj (gjk∂xkφ) +
d∑
j=1

bj∂xjφ+ V φ, D(A) =
{
φ ∈ H1

0 (M) | Aφ ∈ L2(M)
}
,

where M is a C2 connected bounded domain in Rd, bj and V are complex valued
and bounded on M , gjk ∈ C1(M), the matrix G = (gij) is real symmetric and
0 < G ≤ I uniformly on M . Indeed these assumptions ensure that A is a generator
of a cosine operator function, cf. [2, theorem 7.2.3], and that the support propagates



18 LUC MILLER

with speed less than one, cf. [1, 48]. N.b. if bj = 0 and V is real then A is self-adjoint,
theorems 5.2 and 5.3 also hold and [7] proves that (39) does hold.

5.2. Lower bound for the cost rate.

Theorem 5.1. If A satisfies the Gaussian estimate (30) and the cost bound

‖eTAv‖2 ≤ c0e
2c
T

∫ T

0

‖ΩetAv‖2dt, v ∈ D(A), T ∈ (0, T0), (36)

then c ≥ d2
Ω/4 where dΩ is the distance defined in (31).

Proof. Given d < dΩ, by the definition (31), there is an open ball ω ⊂M such that
dist(Ω, ω) > d. Taking v = ω in (36), applying (30) and taking the limit T → 0
yields a contradiction for c ≤ d2/4:

0 6= ‖ω‖2 ← ‖eTAv‖2 ≤ c0e
2c
T

∫ T

0

‖ΩetAv‖2dt ≤ Tc0d2
0‖ω‖2e

2(c−d2/4)
T → 0.

Hence c > d2/4. Taking the limit d→ dΩ completes the proof.

In the remaining part of § 5, we need spectral subspaces to state our results.
Therefore we assume that A is the generator of a normal semigroup (cf. § 3.6) and

Hλ is the spectral subspace of H relative to
{
z ∈ σ(−A) | Re z > λ2

}
. (37)

N.b. λ was an “eigenvalue” in Eλ, now it is a “square-root of an eigenvalue” in Hλ.
The next theorem makes a weaker assumption than the previous one but draws

the same conclusion when taking the limit ε→ 0.

Theorem 5.2. If A is the generator of a normal semigroup, satisfies the Gaussian
estimate (30) and the cost bound for some ε ∈ (0, 4/d2

Ω]:

‖eTAv‖2 ≤ c0e
2c
T

∫ T

0

‖ΩetAv‖2dt, v ∈ H 1
εT
, T ∈ (0, T0), (38)

then (1 + ε)c ≥ d2
Ω/4 where dΩ is the distance defined in (31).

Proof. Let d and ω be as in the proof of theorem 5.1. We consider φ = eεTAω and
its projection v on H 1

εT
, i.e. v = 1−A<(εT )−2 φ and φ− v = 1A≤−(εT )−2 eεTAω. The

spectral representation of functions of A and ε ≤ 4/d2
Ω yield

‖etA(φ− v)‖ ≤ e−
t+εT
(εT )2 ‖ω‖ ≤ e−

1
(εT ) ‖ω‖ ≤ e−d

2
Ω/(4(1+ε)T )‖ω‖.

Plugging this and (30) for φ in (38) yields (1 + ε)c ≥ d2/4 as in the proof of
theorem 5.1. Taking the limit d→ dΩ completes the proof.

Both theorems 5.1 and 5.2 were proved in [33, theorem 2.1] in the setting of § 2.4.

5.3. Lower bound for the spectral rate.

Theorem 5.3. If A is the generator of a normal semigroup, satisfies the Gaussian
estimate (30) and the spectral observability estimate on Hλ defined in (37)

‖v‖ ≤ a0e
aλ‖Ωv‖, λ > 0, v ∈ Hλ, (39)

then a ≥ dΩ/2 where dΩ is the distance defined in (31).
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Proof. Let d and ω be as in the proof of theorem 5.1. For any λ > 0 and t ≤ T0,
we consider φ = etAω and its projection v on Hλ, i.e. v = 1−A<λ2 φ and φ − v =
1A≤−λ2 etAω. The spectral representation of functions of A and (30) yield

‖Ω(φ− v)‖ ≤ ‖φ− v‖ ≤ e−tλ
2
‖ω‖ and ‖Ωφ‖ ≤ e− d

2
4t ‖ω‖.

We choose t = d/(2λ) to make the right-hand sides of these inequalities equal.
Plugging them in (39) and taking the limit λ→∞ yield a contradiction for a < d/2:

0 6= ‖ω‖ ← ‖v‖ ≤ a0e
aλ‖Ωv‖ ≤ a0e

aλ(‖Ωφ‖+ ‖Ω(φ− v)‖) ≤ 2a0‖ω‖e(a−d/2)λ → 0.

Hence a ≥ d/2. Taking the limit d→ dΩ completes the proof.
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