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Abstract

The Lebeau-Robbiano strategy deduces the null-controllability of parabolic

systems of linear PDEs from some spectral inequalities: we implement it so simply

that it yields valuable estimates on the cost of the distributed control as the time

available to perform it tends to zero. The solutions and controls of some parabolic

equations can be expressed in terms of those of the hyperbolic equation obtained

by changing the time derivative into a second oder derivative: such transmutation

formulas yield geometric bounds on both the spectral and cost rates.
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1 Heat-like control problems

The basic null-controllability problem we shall consider is: for any given
initial temperature distribution in a domain M , find a heat source located
in a given region Ω such that the temperature is null everywhere after heat
has diffused during a given time T . The cost is the ratio κT of the size of
the input over the size of the initial state: it blows up as T tend to zero.

In § 2, we present the quite general method introduced in [Mil09] to
simultaneously prove null-controllability and estimate this blow-up. For
this basic problem, it proves that the cost κT blows up like exp(c/T ) and
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2 Luc Miller

it is based on an observability estimate for sums of eigenfunctions of the
Dirichlet Laplacian proved by some Carleman estimates in joint papers of
Lebeau with Jerison, Robbiano and Zuazua. Moreover, it bounds the rate
c from above in terms of the rate a in this estimate.

In § 3, we present some bounds on the spectral rate a and the cost rate
c in terms of distances related to the configuration of the control region Ω
within the domain M . The lower bounds are based on Gaussian estimates in
L2 rather than pointwise. This approach introduced in [Mil09] also simplifies
and generalizes earlier results. The upper bound on c is based on the control
transmutation method, cf. [Mil06].

Here are some control problems to which these results apply, cf. [Mil09].
Notations: We denote in the same way an open subset Ω 6= ∅ of M ,

its characteristic function and the multiplication by this function which is

a bounded operator on the Hilbert space H = L2(M) with norm ‖·‖. For
simplicity, we always consider Dirichlet condition on the boundary ∂M of
M , we solve equations in Hilbert spaces of square integrable functions and
achieve control by input functions u in L2([0, T ]×M) = L2([0, T ];H).

Problem 1: Consider the heat equation as an ODE in H,

∂tf −∆f = Ωu,

where ∆ = ∂2
x1

+· · ·+∂2
xd

is the usual Laplacian and M is a smooth connected

bounded domain in R
d. (∆ could also be the Laplace-Beltrami operator on

a compact smooth connected Riemannian manifold M .)
Problem 2: Consider the same heat equation where M = R

d and Ω
is the exterior of a ball with center 0 and radius R. (∆ could also be the
Laplace-Beltrami operator on a complete smooth connected Riemannian
manifold M with Ω the exterior of a compact K such that K∩ Ω∩∂M = ∅.)

Problem 3: Consider the diffusion equation,

∂tf − Pf = Ωu, Pf =

d
∑

j,k=1

∂xj (gjk∂xk
f) +

d
∑

j=1

∂xj (bjf) + V f,

where M is a C2 connected bounded domain in R
d, bj and V are complex

valued and bounded on M , gjk ∈ C1(M), the matrix G = (gij) is real
symmetric and 0 < G 6 I uniformly on M .

Problem 4: Consider the linear Ginzburg-Landau equation,

(1 + ρi)∂tf + (−∆ + V )f = Ωu,

where V ∈ L1
loc(M) is a real potential bounded from below, ρ ∈ R, and M

as in problems 1 or 2.
Problem 5: Consider thermoelastic plates without rotatory inertia,











∂2
t g + ∆2g + α∆f = Ωu1 on (0, T )×M,

∂tf −∆f − α∆∂tg = Ωu2 on (0, T )×M,

g = ∆g = f = 0 on (0, T )× ∂M,

for § 2, where either u1 = 0 or u2 = 0, α > 0, M and Ω are as in problem 1.
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2 The direct Lebeau-Robbiano strategy

Each of these problems can be formulated in terms of a continuous
semigroup (etA)t>0 on a Hilbert space with suitable generator A. By a
duality argument, null-controllability is equivalent to the final-observability

inequality (stated here for problems 1 to 4, but similar in problem 5),

‖eTAφ‖2 6 κT

∫ T

0
‖ΩetAφ‖2dt, φ ∈ H, T > 0, (FinalObs)

where κT is the cost, i.e. the ratio of the size
∫ T
0 ‖u‖2dt of the input over the

size ‖f(0)‖2 of the initial state which it annihilates.

In problem 1, A = ∆ with domain D(A) = H2(M) ∩H1
0 (M) ⊂ H and

the Lebeau-Robbiano strategy is based on the spectral inequality,

‖v‖ 6 a0e
aλ‖Ωv‖, λ > 0, v ∈ Hλ, (SpecObs)

where Hλ denotes the set of finite sums of eigenfunctions of −∆ with
eigenvalues less than λ2. More generally Hλ is the spectral subspace of
H relative to the part of the spectrum of A with real part greater than
−λ2. E.g. (SpecObs) holds for problem 2: v ∈ Hλ means that the Fourier
transform v̂(ξ) vanishes for |ξ| > λ, i.e. v is the restriction to the real axis of
an entire function ṽ such that |ṽ(z)| 6 ceλ|Im z| by the Paley-Wiener theorem.

Theorem 1 (SpecObs) implies (FinalObs) with, for any c > 4a2, the cost

bound: κT 6 c0e
2c/T .

With c > 8a2, this theorem is due to Seidman. Indeed [Sei08] states an
abstract theorem which also applies to problem 5. The statement in [Mil09]
has a simpler cost bound and is more general (e.g. it applies to [Lea09] and
to linear elastic systems with structural damping for which λ in (SpecObs)
and T in the cost bound have fractional powers). In his survey [Zua06],
which covers the Lebeau-Robbiano strategy and the cost of fast controls,
Zuazua remarked: “Actually, as far as we know, there is no direct proof of
the fact that the spectral observability inequality implies the observability
inequality for the heat equation. The existing proof is that due to Lebeau
and Robbiano and passes through the property of null controllability and
duality”. Whereas Seidman’s proof of this theorem still uses approximate
null-controllability, our direct proof does not have recourse to controllability.
(cf. [TT09] for a less general direct proof based on the moment problem)

For problem 3, with V real and bj = 0 to ensure self-adjointness,
(SpecObs) is proved in [BHLR09] and theorem 1 still holds, including with
∂t replaced by (1 + ρi)∂t as in problem 4. The cost bound in theorem 1 is
still valid for problem 5, keeping (SpecObs) as in problem 1 and replacing
Ω and H in (FinalObs) by the suitable bounded observation operator.

We explain the direct Lebeau-Robbiano strategy on a simple example.
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Proof that (SpecObs) with a = 1 implies the cost bound κT 6 e18/T ,
for T small enough, for problems 1 and 2. First note that κT 6 1/T 6 e1/T

when Ω = M . Hence (SpecObs) with a = 1 implies

‖eT∆v‖2 6 eλ+1/T

∫ T

0
‖Ωet∆v‖2dt, T > 0, λ > 0, v ∈ Hλ.

On the other hand, for w ⊥ Hλ the time-decay rate increases with λ:
‖et∆w‖ 6 e−tλ2‖w‖. To prove (FinalObs), we decompose φ = v + w with
λ = 3/T , and use ‖eT∆φ‖2 = ‖eT∆v‖2 + ‖eT∆w‖2 6 ‖eT∆v‖2 + e−9/T ‖w‖2.
Since there is no decay as t→ 0, we observe on [T/2, T ] but not on [0, T/2]:


















‖eT∆v‖2 6 eλ+2/T

∫ T

T
2

‖Ωet∆v‖2dt = e5/T

∫ T

T
2

‖Ωet∆v‖2dt, v ∈ Hλ,

∫ T

T
2

‖Ωet∆w‖2dt 6
T
2 ‖e

T
2

∆w‖2 6 Te−Tλ2‖w‖2 = Te−9/T ‖w‖2, w ⊥ Hλ.

Hence ‖eT∆φ‖2 6 2e5/T

(

∫ T

T
2

‖Ωet∆φ‖2dt + Te−9/T ‖w‖2
)

+ e−9/T ‖w‖2.

Taking T small enough, setting τ = T , q = 2/3 and f(T ) = e−6/T , this
yields the approximate observability inequality,

f(τ)‖eτ∆φ‖2 − f(qτ)‖φ‖2 6

∫ τ

0
‖Ωet∆φ‖2dt, φ ∈ H, τ ∈ (0, ε0). (1)

Consider the partition (0, T ] = ∪k∈N(Tk+1, Tk] with Tk+1−Tk = τk = qτk−1.
Applying (1) on each [Tk+1, Tk] with τ = τk and adding these telescoping
inequalities yield, since f(T )→ 0 as T → 0:

f((1− q)T )‖eT∆φ‖2 = f(τ0)‖eT0∆φ‖2 − 0× ‖φ‖2 6

∫ T

0
‖Ωet∆φ‖2dt.

This completes the proof of (FinalObs) with κT 6 1/f((1− q)T ) = e18/T .

3 Transmutations

The lower bounds in this section are given in terms of the following distance:

dΩ = sup
y∈M

dist(Ω, y),

i.e. the furthest from Ω a point of M can be, e.g. in problem 2: dΩ = R.

Theorem 2 (FinalObs) with κT = c0e
2c/T implies c > d2

Ω/4.

Theorem 3 (SpecObs) implies a > dΩ/2.

Theorem 2 holds for problems 1 to 4. Theorem 3 holds for problems 1 to 4
with bj = 0 and V real to ensure selfadjointness and natural spaces Hλ.
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The upper bound in theorem 4 is given in terms of the length LΩ of the
longest generalized geodesic in M which does not intersect Ω (these geodesics
behave like the rays of geometrical optics), e.g. in problem 2: LΩ = 2R.

When M is a segment of length L it is known that null-controllability
with input at one end holds with the cost bound κT 6 c0e

2c/T for any
c > c∗L

2. Tenenbaum and Tucsnak proved in 2007 that c∗ 6 3/4.

Theorem 4 (FinalObs) holds with κT 6 c0e
2c/T for any c > c∗L

2
Ω.

N.b. theorem 4 is only relevant when LΩ is finite. The proof of theorem 4
is based on this result of Bardos, Lebeau and Rauch: L > LΩ is sufficient
(and almost necessary) for the exact controllability of the wave equation
∂2

t g −∆g = Ωu in the context of problem 1. This result, hence theorem 4,
extend to problem 2. Burq extended this result to ∂2

t g−Pg = Ωu, when M
is C3, P is as in problem 3 with gjk ∈ C2(M), bj = 0 and V = 0, replacing
the geodesics by bicharacteristics of G, hence theorem 4 holds under these
assumptions.

The key idea in this section is that the wave equation ∂2
t w = Aw

describes “the geometry” of the diffusion equation ∂tφ = Aφ in short times.
For A = ∆, Kannai implemented this idea with the transmutation formula

(in order to prove an asymptotic expansion of the heat kernel as t→ 0),

et∆φ =

∫ +∞

−∞
k(t, s) cos(s

√
−∆)φds, k(t, s) =

1√
4πt

e−s2/(4t), (2)

which gives the solution of the heat equation as a weighted integral over
all times of the (even) solution of the wave equation with the same initial
condition. This formula results directly from the integral representation
of functions of ∆ via spectral measures and the Fourier transform of the
Gaussian. Cheeger, Gromov and Taylor fully exploited such transmutations
in combination with the finite speed of propagation.

Indeed the support of these waves propagate with speed less than one,
i.e. Ω cos(t

√
−∆)ω = 0, t ∈ (0, δ), where ω and Ω are open subsets of M

and δ = dist(Ω, ω). Plugging this in (2) implies the L2 Gaussian estimate

on which theorems 1 and 2 are based,

‖Ωet∆ω‖ 6 ‖ω‖ 1√
4πt

∫

|s|>δ
e−s2/(4t)ds 6 ‖ω‖e−δ2/(4t). (3)

Proof of theorem 2 for problems 1 and 2: Given δ < dΩ, there is an
open ball ω ⊂ M such that dist(Ω, ω) = δ. Taking φ = ω in (SpecObs),
applying (3) and taking the limit T → 0 yields a contradiction for c > δ2/4:

0 6= ‖ω‖2 ← ‖eTAφ‖2 6 c0e
2c
T

∫ T

0
‖ΩetAφ‖2dt 6 Tc0d

2
0‖ω‖2e

2(c−δ2/4)
T → 0.

Hence c > δ2/4. Taking the limit δ → dΩ completes the proof of theorem 2.
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The proof of theorem 3 is similar (Jerison and Lebeau proved a > 0 for
problem 1 by a pointwise Gaussian estimate and Weyl’s law for eigenvalues).

The proof of theorem 4 uses the control transmutation method, cf.
[Mil06]. It replaces the one dimensional fundamental heat solution k in
(2) by the solution of the heat equation obtained from an initial Dirac mass
with an input on the boundary of [−L, L] which performs null-controllability
in time T . Thus both the solution and the input of the wave equation are
transmuted into those of the heat equation (this idea was first used by Phung
for Schrödinger equation). Cf. [MZ09] for a recent numerical application.

An upper bound for a in problem 1 with d = 1 is given in [TT09].
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[Lea09] M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and

application to the null-controllability of parabolic systems, J. Funct. Anal.
(2009), doi:10.1016/j.jfa.2009.10.011.

[Mil06] L. Miller, The control transmutation method and the cost of fast controls, SIAM
J. Control Optim. 45 (2006), no. 2, 762-772.

[Mil09] L. Miller, A direct Lebeau-Robbiano strategy for the observabil-

ity of heat-like semigroups, preprint (2009), available online at
http://hal.archives-ouvertes.fr/hal-00411846/.

[MZ09] A. Munch and E. Zuazua, Numerical approximation of null controls for the

heat equation through transmutation, preprint (2009).

[Sei08] T. I. Seidman, How violent are fast controls. III, J. Math. Anal. Appl. 339

(2008), no. 1, 461–468.

[TT09] G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion

equations, preprint (2009).

[Zua06] E. Zuazua, Controllability and Observability of Partial Differential Equations:

Some results and open problems, Handbook of differential equations:
evolutionary equations. Vol. III, Elsevier/North-Holland, 2006, 527–621.


