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Abstracts

Fast control cost for heat-like semigroups: Lebeau-Robbiano strategy
and Hautus test

Luc Miller

(joint work with Thomas Duykaerts)

Since the seminal work of Russell and Weiss in [7], resolvent conditions for various
notions of admissibility, observability and controllability, and for various notions of
linear evolution equations have been studied intensively, sometimes under the name
of infinite-dimensional Hautus test, cf. [8, 2]. This talk based on [1] investigates
resolvent conditions for null-controllability in arbitrary time: necessary conditions
for general semigroups, and sufficient conditions for analytic normal semigroups
and semigroups with negative self-adjoint generators.

1. Introduction

Let −A be the generator of a strongly continuous semigroup on a Hilbert space
E . Let C be a bounded operator from the domain D(A) with the graph norm to
another Hilbert space F . The norms in E and F are denoted ‖·‖. We refer to the
monograph [8] for a full account of the control theory of semigroups.

Recall the usual admissibility condition (for some time T > 0 hence all T > 0),

∃KT > 0, ∀v ∈ D(A),

∫ T

0
‖Ce−tAv‖2dt ≤ KT ‖v‖2.(1)

If C is admissible for A then null-controllability at time T is equivalent to
final-observability at time T (cf. [8], i.e.

∃κT > 0, ∀v ∈ E , ‖e−TAv‖2 ≤ κT

∫ T

0
‖Ce−tAv‖2dt.(2)

The control property investigated here is (2) for all T > 0.

1.1. Control cost. The coefficient κT in (2) is the control cost : it is the ratio
of the size of the input over the size of the initial state which the input steers to
the zero final state in a lapse of time T . It blows up as T → 0. E.g. for the heat
semigroup on a compact manifold M with Dirichlet boundary conditions observed
from a subset Ω: κT ≤ c0 exp(2c/T ), T ∈ (0, 1), where c0 is a positive constant,
implies c ≥ d2/4 where d is the furthest a point of M can be from Ω, and is implied
by c > 3L2/4 where L is the length of the longest generalized geodesic in M which
does not intersect Ω (L < +∞ is known as the condition of Bardos-Lebeau-Rauch).

For many evolutions of parabolic type, κT is bounded by c0 exp(2c/T β) where
c, c0 and β are positive constants. E.g. thermoelastic plates without rotatory
inertia, the plate equation with square root damping, diffusions in discontinuous
media or in a potential well, diffusions generated by the fractional Laplacian or
non-selfadjoint elliptic generators, cf. references in [5].
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1.2. Resolvent conditions. The resolvent condition: ∃M > 0,

‖v‖2 ≤ M

(Reλ)2
‖(A− λ)v‖2 + M

Reλ
‖Cv‖2, v ∈ D(A), Reλ > 0.(3)

was introduced in [7] as a necessary condition for exact observability in infinite
time of exponentially stable semigroups.

When A is skew-adjoint (equivalently when the semigroup is a unitary group),
it was proved in [3] that the following resolvent condition is necessary and sufficient
for final-observability (hence exact observability) in some time T > 0: ∃M > 0,

‖v‖2 ≤ M‖(iA− λ)v‖2 +M‖Cv‖2, v ∈ D(A), λ ∈ R.
We refer to [6] for more background and references. This result was extended to
some more general groups in [2, theorem 1.2].

When −A generates an exponentially stable normal semigroup, [2, theorem 1.3]
proves that the resolvent condition (3) is sufficient for the weaker notion:

∃T > 0, ∃κT > 0, ∀v ∈ E , ‖e−TAv‖2 ≤ κT

∫ ∞

0
‖Ce−tAv‖2dt.(4)

In this framework (4) implies (2) for some time T .
But it seems that resolvent conditions for final-observability for any T > 0 in (2)

has not been investigated yet, although it is quite natural for heat-like semigroups.

2. Results

2.1. Necessary resolvent conditions for semigroups. The proof mainly con-
sists in changing i into −1 in [3, lemma 5.2]. Cf. also the proof of [7, theorem 1.2].

Theorem 1. Let BT = sup
t∈[0,T ]

‖e−tA‖ be the semigroup bound up to time T .

If (1) and (2) hold then : ∀v ∈ D(A), λ ∈ C, Reλ > 0,

‖v‖2 ≤ 2e2T Reλ

(
(B2

T + 2κTKT )
‖(A− λ)v‖2

(Reλ)2
+ κT

‖Cv‖2

Reλ

)
,

Theorem 2. If final-observability (2) holds for all T ∈ (0, T0] with the control

cost κT = c0e
2c
Tβ for some positive β, c and c0 then the resolvent condition

‖v‖2 ≤ a0e
2a(Reλ)α

(
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), Reλ > 0,

holds with power α = β
β+1 and rate a = c

1
β+1 β+1

βα .

It still holds for λ ∈ C if Reλ is replaced by Re+ λ := max {Reλ, 0}.
2.2. Sufficient resolvent conditions for an analytic normal semigroup.
The proof is based on the Lebeau-Robbiano strategy of [5]. N.b. (1) is not assumed.

Theorem 3. Assume that −A generates an analytic normal semigroup, hence
there exists ω ∈ R and θ ∈ [0, π

2 ) such that σ(A) ⊂ {z ∈ C : arg(z − ω) ≤ θ}.
The resolvent condition with α ∈ (0, 1), ω0 < ω, λ0 > ω0, positive a0 and a,

‖v‖2 ≤ cos2 θ

(λ− ω0)2
‖(A− λ)v‖2 + a0e

2aλα

‖Cv‖2, v ∈ D(A), λ ≥ λ0,



4 Oberwolfach Report 56

implies final-observability (2) for all time T > 0 with the control cost estimate

lim sup
T→0

T β lnκT ≤ 2aβ+1(β + 1)β(β+1)β−β2

, where β =
α

1− α
.

2.3. Sufficient resolvent condition for a negative self-adjoint generator.
The proof combines the Lebeau-Robbiano strategy of [5], the control transmuta-
tion method of [4] (which deduces the final-observability of the heat-like equation
v̇ + Av = 0 from the exact observability of the wave-like equation ẅ + Aw = 0)
and results on resolvent conditions from [6].

Theorem 4. Assume that the positive self-adjoint operator A and the operator
C bounded from D(

√
A) with the graph norm to F satisfy the admissibility and

observability conditions with nonegative powers γ and positive δ, L∗ and M∗:

‖Cv‖2 ≤ L∗λ
γ

(
1

λ
‖(A− λ)v‖2 + ‖v‖2

)
, v ∈ D(A), λ ≥ inf A,

‖v‖2 ≤ M∗λ
δ

(
1

λ
‖(A− λ)v‖2 + ‖Cv‖2

)
, v ∈ D(A), λ ≥ inf A.

If γ + δ < 1 then final-observability (2) holds for all T > 0 with the cost estimate

lim sup
T→0

T β lnκT < +∞, where β =
1 + γ + δ

1− γ − δ
.

The assumption of the control transmutation method corresponds to γ = δ = 0.
The Russell-Weiss condition (3) corresponds to δ = −1.

A logarithmic improvement of this theorem is also proved in [1] thanks to this
new variant of the Lebeau-Robbiano strategy of [5]:

Theorem 5. Assume the admissibility condition (1) and that −A generates a
normal semigroup. If the logarithmic observability condition on spectral subspaces

‖v‖2 ≤ a0e
2aλ/((log(log λ))α log λ)‖Cv‖2, v ∈ 1ReA<λE , λ ≥ λ0.

holds with α > 2, λ0, a0, a positive then final-observability (2) holds for all T > 0.
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