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Théorémes limites pour ’estimation & base de valeurs
extrémes du contour de processus ponctuels

Résumé : Nous donnons des conditions suffisantes permettant d’établir un théoréme cen-
tral limite ainsi qu’un principe de déviations modérées pour des estimateurs du support de
processus de Poisson. Les estimateurs considérés s’écrivent comme une combinaison linéaire
de valeurs extrémes du processus ponctuel. Nos résultats sont illustrés dans quatre cas :
méthode des fonctions orthogonales (base de Haar et base trigonométrique), estimateur uti-
lisant la base de Faber-Shauder et méthode du noyau. Nous proposons une hiérarchie parmi
cette famille d’estimateurs basée sur la comparaison des vitesses optimales de convergence.

Mots-clés :  estimation fonctionnelle, théoréme central limite, principe de déviations
modérées, valeurs extrémes, processus de Poisson, estimation de contour.



Limit theorems for boundary estimates 3

1 Introduction

Many proposals are given in the literature for estimating a set S given a finite random set
N of points drawn from the interior. This problem of edge or support estimation arises in
classification (HARDY & RASSON [20]), clustering problems (HARTIGAN [21]), discriminant
analysis (BAUFAYS & RASSON [2]), and outliers detection (DEVROYE & WISE [6]). Appli-
cations are also found in image analysis (KOROSTELEV & TSYBAKOV [26]). For instance,
the segmentation problem can be considered under the support estimation point of view,
where the support is a connex bounded set in R?. We also point out some applications in
econometrics (e.g. DEPRINS, et al [5]). In such cases, the unknown support can be written

S={(zy): 0<z<1; 0<y < fla)}, (L.1)

where f is an unknown function. Here, the problem reduces to estimating f, called the
production frontier (see for instance HARDLE et al [17]). The data consist of pair (X,Y)
where X represents the input (labor, energy or capital) used to produce an output Y in a
given firm. In such a framework, the value f(z) can be interpreted as the maximum level of
output which is attainable for the level of input . KOROSTELEV et al [25] suppose f to be
increasing and concave, from economical considerations, which suggests an adapted estima-
tor, called the DEA (Data Envelopment Analysis) estimator. Its asymptotic distribution is
established by GLIBELS et al [11].

Here N is a Poisson point process, with observed points belonging to a subset S defined as in
(1.1) where f is an unknown function which needs not to be monotone. An early paper was
written by GEFFROY [9] for independent identically distributed observations from a density
¢. The proposed estimator is a kind of histogram based on the extreme values of the sample.
This work was extended in two main directions.

(a) On the one hand, piecewise polynomials were introduced and their optimality in an
asymptotic minimax sense is proved under weak assumptions on the rate of decrease
a of the density ¢ towards 0 by KOROSTELEV & TSYBAKOV [26] and by HARDLE et
al [18]. Extreme values methods are then proposed by HALL et ol [16] and by GIJBELS
& PENG [10] to estimate the parameter .

(b) On the other hand, different propositions for smoothing Geffroy’s estimate were made.
GIRARD & JACOB [14] introduced estimates based on kernel regressions and orthogonal
series method [12, 13]. In the same spirit, GARDES [8] proposed a Faber-Shauder
estimate. In each case, the consistency and the limit distribution of the estimator are
established.

We also refer to ABBAR [1] and JACOB & SUQUET [23] who used a similar smoothing
approach, although their estimates are not based on the extreme values of the Poisson
process.

The work presented here offers a general framework for studying the estimates of the family
(b). We consider estimates writing as linear combinations of the extreme values of the Pois-
son process. We establish general central limit theorems and moderate deviation principles
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4 Girard €& Menneteau

for our estimates and we apply them to the particular cases quoted in (b). Such an approach
allows to propose a hierarchy within this family of estimates according to their convergence
rates.

2 The boundary estimate
Let S C R? and consider a sequence of Poisson point processes
Ny ={N,(D):D e B(S)}, n>1,

with intensity measure nc), where ¢ > 0, and X is the Lebesgue measure on B(S), the
Borel o-algebra of S. Let {(Xy,i,Yn,i), 1 <1 < N,} be the set of points associated to the
point process. In the following, we assume that there exists a function f :[0,1] - R*, such
that S can be written as (1.1). Our aim is then to estimate S via an estimation of f. Let
kn 1 oo and define by {I,, : 1 <7 < k,} a mesurable equidistant partition of [0,1]. For all
1<r<k,, set

Dy, = {(w,y) cx€ly,y, 0<y < f(x)}a

the cell of S built on I, , and N,, , = Np(Dp ). We introduce
Y;:,T = maX{Yn,i : (Xn,z';Yn,i) S Dn,r};

if Dp,» # 0 and Y; . = 0 otherwise. We use the convention 0 x oo = 0. Our estimator of f is

kn
. 1 1\,
R S I (1+ 5= ) vir 21)

where £, : [0,1] = R is an arbitrary weighting function determining the nature of the
estimate. In the next section, conditions are imposed on k,, and examples are provided
in Section 5. It is well-known that Y7, is an estimator of the maximum of f on I, with
negative bias. The use of the random variable (1 + N 1)Y*, allows to reduce this bias.
Therefore, fn appears as a linear combination of extreme value estimates of sampled values
of f. The asymptotic properties of fn are established in Section 3, and proved in Section 4.

Illustrations are presented in Section 5 on the estimates considered in family (b).

3 Main results

Define m = min{f(z) : z € [0,1]}, M = max{f(z) : z € [0,1]} and

kn
fon(2) = <Z Hi,r(w))

1/2

INRIA



Limit theorems for boundary estimates 5

For all 1 <7 < ky, set my,, =min{f(z) : ¢ € I}, Mp, = max{f(z) :z € I, ,} and
Wy () = Kin,r (T) /K (). (3.1)

We consider the following series of assumptions:

(H.1) £, T o0 and k,/n — 0 as n — oo.
(H.2) 0<m < M < 400 and

A, = max My, —my,| =o0(kn/n) as n — oo.
1<r<ky,

(H.3) For each (z1,...,z4) C [0, 1], there exists a covariance matrix in R?

r,nza) = [Oigl1<ij<a
such that for all 1 <4, j <d,

kn
:£:1Unm(xiyunm(xj)—+ 0;,j as n — Q.

r=1

(H.4) For all z € [0,1],
max |wy(x)] = 0asn — oco.

1<r<kn
(H.5) For all z € [0,1],
(nn 3:))
=o|———%) asn — oo.
n

1 kn
7 n,T -1
kn;” (@)

(H.6) For all z € [0,1],

. kg o @)(@) = ) =0 () a5 1 o0

(H.7) For all z € [0,1],

k
1 &n .
™ TEZI |, (2)| max (An,exp (—m%)) =0 (RT(SC)> as n — 00.

n

Before proceeding, let us comment the assumptions. (H.1)—(H.4) are devoted to the control
of the centered estimator (f, —E f,). Assumption (H.1) imposes that the mean number of
points in each D, , goes to infinity. (H.2) controls the variations of the function f on I, .
More precisely it imposes that the mean number of points in D, , above m,, , converges to
0. (H.3) is devoted to the multivariate aspects of the limit theorems. (H.4) imposes to all

RR n° 4366



6 Girard €& Menneteau

the weight functions &, ,(z) in the linear combination (2.1) to be approximatively of the
same order. This is a natural condition to obtain an asymptotic Gaussian behavior. These
assumptions are easy to verify in practice since they involve either f or k, , without mixing
these two quantities. Assumptions (H.5)—(H.7) are devoted to the control of the bias term
(E f, — f). They prevent it to be too important with respect to the variance of the estimate
(which will reveal to be of order k,/n). Consequently, these three assumptions involve
both the unknown function f and the weight functions &, . (H.5) imposes the mean of the
coefficients in (2.1) to be approximatively 1. So, the estimate (2.1) can roughly be interpreted
as a convex combination of extreme values. (H.6) is a localization condition: The weight
function Ky, should be concentrated on I, .. Then, the choice of proper weight functions
requires to balance the antagonistic conditions (H.4) and (H.6). Finally, (H.7) can be
seen as a stronger version of (H.2).

Our first result gives the multivariate central limit theorem for (f,).

Theorem 1 Under assumptions (H.1)—(H.7), and for all (z1,...,24) C [0,1],

~

{fe:(Lacrj) (fa(@;) = fz)) : 1< < d} 7 VO ean):

We present now some large deviation properties of ( fn) (see Definition 1 of the appendix

for the definition of the large deviation principle and see e.g. DEMBO & ZEITOUNI [4] for a
general account on that topic).
For all (z1,...,z4) C [0,1] such that ¥(,, . ,.) is regular, define

1
. d t, s—1
I(mn---,md) ‘u €RY = 5 uz(ml,...,zd)u‘

The following family of large deviation principles is sometimes referenced in the literature
as a moderate deviation principle. It could be used to measure the asymptotic performance
of fn, see e.g. KALLENBERG [24] and references therein.

Theorem 2 Under assumptions (H.1)-(H.7) and for all (z1,...,24) C [0,1] and each
€n 4 0 such that Xy, . ., s reqular and

ax  max |wn,r(z;)] = 0(ven),

the sequence of random vectors

nc

Kn ()

Va2t - fe) 1< < df

follows the large deviation principle in R? with speed (¢,) and good rate function Iz, za)-

INRIA



Limit theorems for boundary estimates 7

In practice, ¢ is not known and has to be estimated. In this aim, we introduce

. Ny
Cn = —()
Néy,

where

n

1 k
y = —Z<1+

=1

) v:,

is an estimator of a = A\(S). We then have the following corollary:

1
Nn,r

Corollary 1 Theorem 1 and Theorem 2 still hold when c is replaced by é,,.

4 Proofs

The proofs of our main results are built as follow. First, we establish a multivariate central
limit theorem and a moderate deviation principle for the finite dimensional projection of the
centered process

“ (fa @) —E(fn@)), 2,1

(see Proposition 1 below). To this aim, by the general framework of the appendix (Theorem 3
and Theorem 4) it is sufficient to control the centered moments of

1 " 1 ne N
)z = (14 5 (5) v

This is achieved in Lemma 2 and Lemma 3. In a second time, we establish that the bias

term
o E(h@) -1 @)

vanishes when n 1 oo (see Proposition 2). Finally, we prove in Lemma 5 and Lemma 6
that ¢ can be replaced by ¢, in the multivariate central limit theorem and in the moderate
deviation principle. Before that, we introduce some new notations and definitions needed
for our proofs. For all 1 <r < k,, set

En,r = (1 +

D;,r = {($7y) SRS Iﬂ,T7 0 S y S mn,T}:

Dr_t,r ={(z,y):x € Lnzy Mnr <y < f ()},

N, (resp. Nrtr) =N, (D;’T) (resp. N, (D;t,r)),

RR n° 4366
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_ nc _
Zn,r (resp. ZT_:T) = (k_) max {Yn,i : (Xn,z'aYn,i) € Dn,r (resp. D;t,r)} )

n

if D, , (resp. D}.) # 0, and Z,, (resp. Z,\,.) = 0 otherwise.

expanded as

é-n,r = Z;,r + Tn,r-

where
Yn,r = Y1 T Ynr2 + Ynor3,
with
Yned = (Ziy —E(Zn,) Iint oy
Yoz = (B(Zn,) = Z0) Linit 5oy
and

Yn,r3 = Zp o/ Npr-
Some technical results are collected in the next lemma.

Lemma 1 Under assumptions (H.1) and (H.2) we have

i)

+ — n —
 ax P (N}, >0)=0 (kn An) o(1).

i) For all1 <r < ky, and any t € [0,m,,,],
P (Z,, <t) =exp(t — An,r),

with

i) For all 1 <r < ky,

w) For all 1 < r < ky,

Note that &, can be

(4.4)

(4.5)

INRIA
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v) For all1 < r < ky,

]E(Z;’T>—1 A (14 Apr) (4.6)
Ne = e n,r) - .

vi) For all £ >1 and 1 <r < k,,

E(|Z0 —E(Z,)|) <1428 4.7)
vig) For all £ > 1,
4
¢ ne +
. ggnE<I%,r,1l ) < (1 a An)  max P (N7, >0). (4.8)
vigi) For all £> 1,
4 I +
max E (|7n,r,2| ) < (U+0) max BN, >0). (4.9)
iz) For all £ > 1,
¢ A\
| -_n +
lénrgn]E(|%,T,3| ) <o{1+ (1 + = ) max B (N, >0) ). (4.10)

Proof : i), ii), iii) and iv) are obtained by easy calculations.
v) By a well known property of poisson processes, Z, . | N, . has the same distribution as
the maximum of N, independent variables uniformly distributed on [0, Ay,,] . Hence,

7= I N=.>0 I Ny »>0 2 At
E n,r - {N > }]E Vi N— = A E {N7,»>0} — n,r —An,r
(N;,T) ( e A o qg{(q“)!e

=1—e " (14 Ay)-

vi) Note that

E(|Z7, ~E(2,)|) =t / e (27, -E (27| > )
Moreover, by (4.2) and (4.4),

P(|Zny ~E(Z,,)| > 1) =P (Z,, > E(Z,,) +1) + P (Z,, <E(Z,,) - 1)
=[l—exp(t— Ay +E(Z;,))] ]I[O,/\H,T—IE(Z;,T)](t)
+exp (—t— A +E(Z,,)) Lo m(zz, ) (®)
< Ty (t) +exp (e —1) et

RR n° 4366
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Hence,

¢ 1 +oo
E(|Z;T -E(Z,,)| ) < e/ "= dt + exp (e — 1) e/ e~ tat
0 0
<1+exp (e*)‘"” - 1) 2.
vii) It is straightforward from (4.4) that

il = |Z2f = A + A —E(Zp ) [ Lwt 50y < (k A, +1>]I{N+ Sop (411)

viii) Since Z,, . and NI, are independent,

n,r

max E(|’}’nrg|)< max ]E(|Z —E(Z_ )|1f) max P(N+ >0)

1<r<kn 1<r<kn 1995k
and the result holds by (4.7).
ix) Since
Z;:,"‘ Zr:r nc Mnr
Np,» S {NTTFO} T kn Nivy IH{N;,"T>1}=
we have,
Zn ‘ Zn, ¢ nc M ¢
((Nn,T>>_ ((Nn,r>>+ ((ann,r+1> ( n,r Z )
Moreover,
N ‘
d ! ¢ ]I{N_ >1}
((22)) =o{() s e (it
( Nnr ) ( Nor (( n,r) n,r) " (Nfzr)f 1 (£+N7;r)
oo 0
(g+e—1)1 Agtt
= : " 4.12
; Ag=1gl (g +0)1° (4.12)
<

p— )

since for all £ and g,

(g+2—1)!
Lgt—1q! =

£ oo 1 )\q-‘,—@ M £
(Mn,r> E'Z (q + E)Z n,r e_)\n,r S ( n,r) f‘
My, Lg+1)q (q+£)' Mp,r

) q=0 >

4
< (1+ ﬁ) 2, (4.13)
m

Besides,

((nc M, ., )‘3)
E({T————
kn Nn,T +1

INRIA
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since for all £ and g,

Hence,

4
max ]E(m,r,gﬁ) < (1 + <1 + %) max P (N, > 0)) .

1<r<kn 1<r<kn

In the next lemma we give an uniform upper bound on the centered moments of (&, ;).

Lemma 2 Under assumptions (H.1) and (H.2) we have

. J2
TP T ) 25 E (6 ~Bennl) <1

Proof : By Lemma 7 (see the appendix), we get that for all 1 <r < k,,

max E(lé“n,r - E(gn,r)ﬁ) < 2 max ( max E(|ZT;T ~E(Z,,) |‘) ,zllggn E (mﬁ)) .

1<r<kn 1<r<kn
(4.14)
From Lemma 1 vi), we have
- Y
max E (|Zw ~E(Z,,)] ) < 201, (4.15)
Moreover, Lemma 7 and Lemma 1 vii)—ix) entail, for all large n, and all £ > 2,
max ]E(|fy |€) < 3’ max max E<|'y -|Z) <640
1<r<kn ) =T 1<j<31<r<kn Il ) ==
which, combined with (4.14) and (4.15) give the result. [ |

The next lemma provides an exact uniform control of the variances of (£n,r); <, e -

Lemma 3 Under assumptions (H.1) and (H.2) we have

max |V (&n,) — 1] = o0(1).

1<r<kn

Proof : Since

V (E",T') = V (Z'r:,r) + 2(COU (Zrzrj IYTL,T) + V (’YH,T) Y

RR n° 4366



12 Girard €& Menneteau

we have,
1/2

— -\ _ 7=
(max V(&) — 1< max |V(Z,,) -1+ max V(y,)+2 | max V() V(Z,,)

But, by Lemma 1 iv),

-\ _ — —An,r —2An,r| — 1).
225, [V (Zng) 1] = gy [2hnpetr +e o(1)
Hence, it remains to show that
=o0(1l
lg%)inv (Ynr) =0(1),
and even, by Lemma 7, that
n,rj) = 1).

max max V() =o(l)
Now, Lemma, 1 vii) and viii) with £ = 2 clearly imply that

1?].32(2 13?1(ch (’Yn,r,J) o(1),
S0 it remains to prove that

lggnv (7n,r,3) =o (1)
By (4.12) with £ =2,
2
Z, > 1\ Aet?
E n,r) — (1 + _> n,r 67)‘" »
( (N;,T 42;: q) (¢+2)!
A2 1 Aat2
=l—e?mr [14 N, + 28 - e Anr
( 2 q;q (q+2)!

Now, since,

A2 A2
max e [ 1+ A, + —= | < max e (1 + A+ —) =o0(1),

1<r<kn 2 ~ A>mnc/kn 2

and for all @ > 1,

oo 1 Aq+2 N Q )\%-i;? N 1 o) )\%—i;? N
- n,r —Anr & ’ —An,r = ax > e~ An.r
122}1§nq_1q(q+2)! - 1512%}12"(1:1 (g +2)! + nggkn;(q+2)!
1
S 0(1) + "
Q

INRIA



Limit theorems for boundary estimates 13

we get,

max
1<r<kn

Furthermore, by Lemma 1 v),

max
1<r<kn

Vi
2 (50) 1 =z, [ e @) =0,
n,r =" ="rn

Therefore,

max V 3) < max
1<r<kn (Yn.r,3) < 1<r<kn

Proposition 1 Under assumptions (H.1)—(H.4),
i) for all (z1,...,24) C[0,1],

ne . ) '
{T (z;) (fn (z5) — ]E(fn (-Z'j))) 1<y < d} =2 N (0,Z,,....20)) 5
i) for all (z1,...,xq4) C [0,1], and all €, | O such that such that X, . ..y is regular and

fax - max |wn, (25)] = 0 (vEn),

nc

(Va2 () - () s1 <5 <},

i (27)
follows the large deviation principle in R? with speed (en) and good rate function I(;vl,...,wd)'
Proof: Forall 1 <r <k,, set
Cnr = &nr — E(&nyr)
and
Wnr = (Wnp (T1) ooy Wi (Ta)) -
Then, it is easily seen that
En
(5 (@) —E(fuw)) 1 <5 <) - > o

Moreover, note that ((n,r);< <, are independent. Thus, by (H.3), (H.4), Lemma 3 and
Lemma 2 we may apply Theorem 3 and Theorem 4 to get the intended results. ]

RR n° 4366



14 Girard €& Menneteau

In order to control the bias term, we need information on the expectations of (&)

1<r<k, "
Lemma 4 Under assumptions (H.1) and (H.2) we have
n ne
225, 60r) = el = 0 (o (s () ) ).
Proof : Lemma 1 iii) yields
]E(‘sn,r) - )\n,r = eil\n’r -1+ ]E(’Yn,r,l) + E('Yn,r,ﬁ%)a (416)
with
E(vn,r1) =E ((Z:{,r - ’\"’T)H{Nj,»o}) tE ((’\w - Z;,T)H{N,T,r>0})
—E ((z;T — Anr)T {N:,r>0}) +(1— e n)B(NT, > 0), (4.17)
and, in view of Lemma 1 v),
Z;r + Z::T‘ +
E(’yﬂﬂ'ﬁ):E _’ P(Nnr:O)+1E ~ ]P(Nnr>0)
Nn,r ’ Nn,r ’
. z5,
=1 —e 1+ Ay)P(N, =0)+E (N—> P(N,f, > 0). (4.18)

From (4.16)—(4.18), it follows that
Zppr A
E(énr) = Anr =E((Z}, = Ay 50;) +E (N : ) P(N;, > 0) = Anre 2.
n,r

Now, by Lemma 1 i) and (4.13) with £ = 1, we obtain

nc A, Mnc ne
1<r<kn, | (§n,r) }\n’T| ~ Kn " (1 m ) 1<r<k, ( T > 0) Kn P ( ‘cn)

n ne
=0 (E max (An,exp (—mE)>) ,

under (H.2). [

Proposition 2 Under assumptions (H.1), (H.2), (H.5)-(H.7), we have for all z € [0, 1],

E(@)-1@) 0

nc

Kn ()

INRIA
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Proof : For all z € [0,1], we get, by the triangle inequality and assumptions (H.5) and
(H.8),

o [E(h@) -1 ‘ E(énr) = 5/ )
E(énr) = Anr)
+ Z—gw (2) (e — £ (&)
X e
< <Z |wn,r(m)|> s [BlEnr) = sl +o().  (4.19)
Lemma 4 and condition (H.7) give t;el result. m

Theorem 1 and Theorem 2 are straightforward consequences of Proposition 1 and Propo-
sition 2. The two following lemmas are dedicated to the replacement of ¢ by ¢, in both
theorems.

Lemma 5 Under assumptions (H.1) and (H.2), for all § > 0, there exist as > 0 and
ng > 0 such that
Vn > ng, P(|én — ¢| > ) < 3exp (—nay).

Proof : We have
. 1
|én — ¢| £ —|Np, — nac| + ac
Ny,

an a"

Let 6 > 0 and 75 = min(a/2, ad/(4c)). Then,

. R 2 2¢ns
|en —¢| < |én — cll{jan—a|>ns} + <%|Nn — nac| + T) T{an—al<ns}s

and therefore

1 2
P(|é,—c|>8) < P <5|Nn — nae| > g ( - %)) +P(|an — a| > ns)
N, ) )
< P(n—ggé]c—z,c+ZD—|—P(|&n—a|>n5). (4.20)
Let us consider the first term of (4.20). Since N,, has a Poisson distribution, N, ~ P(nac),
it can be expanded as N, = Y}, T, where the random variables 7, are iid. P(ac).
Introducing

Ar(s) =logE(e®™) = ac(e® — 1)

RR n° 4366



16 Girard €& Menneteau

and denoting

A%(t) = sup(st — Ay (s)) =

‘tlog(t/ac)—t+ac if t>0
ter

+00 if t<0,
Cramer’s theorem (see DEMBO & ZEITOUNI [4], Theorem 2.2.3) yields
1 N, ) ) 0 ]
lirzljgop ﬁlogP (n—g ¢ ]c— 7 c+ ZD < —inf{A;‘r(t), t ¢]c— 7 c+ Z[} <0.

Consequently, there exists aj > 0 such that

0

N, ] ,
VnZl,P(E ¢]C_Z’ C+ZD < exp (—naj). (4.21)

Consider now the second term of (4.20). Lemma 4 yields

[E(as) —a] = O (max (A“’e"p (—m%f)))

which converges to 0 under (H.1) and (H.2). Therefore, there exists ns > 0 such that

kn

Z(é-n,T - ]E(é-’ﬂﬂ‘ ))

r=1

Vn > ns, P(lan —al > ns) < P(lan —E(an)| 2 15/2) =P (

> 776"0/2> )
and in view of Lemma 2, applying Berstein’s inequality (see BosQ [3], Theorem 2.6) yields

v P 2 3¢ n” <2 icd
> an — a| > n;5) < - ~ 5204+ an |-
n > ns, P(lan —al > ns) < 2exp ( 2304k, + 487)5011) = 2o ( 2304 + 48nacn>

(4.22)

Defining s = min(aj, nc? /(2304 + 48nsc)) and collecting (4.20)—(4.22) give the result. m

The last lemma proves that the difference
n ~

(@~ @) = £(@)

Dy(z) =

can be neglected both in the central limit theorem and in the moderate deviation principle.

Lemma 6 Let (z1,...,24) C [0,1].
i) Under assumptions of Theorem 1,

{Dn(z)), 1< j <d} = 0.
it) Under assumptions of Theorem 2, for all n > 0,

lim sup €, log P ( €n lréljaécd|Dn(mj)| > 77) = —o0.

n—oo
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Limit theorems for boundary estimates 17

Proof : i) For all n > 0 and ¢ > 0, we have

nc
Dn(z)| >n) <P(lé, — ¢ > P s
P (@f‘éﬁil n(zj)| > ’7> < P(len —c[ 2 0) + (1??5){11 Kin ()

|ﬁ@n—ﬂmnznd0,

where the first term converges to 0 as n — oo in view of Lemma 5. Thus,

nc ~
i Dn(z;)| > < I P — N = f(z)] >
hgljgopﬂ”(gfgdl n(z;)| _n) < limsup (1??5% Fm(xj)lfn(:va) f(z5)] _n0/5)
= o> .
P (lrgfgd 1Gj| > nC/6> : (4.23)

where (G1,...,Gg) follows the distribution N(0,E(,,,....z,)) (see Theorem 1). Letting § — 0
in (4.23) concludes the proof:

li P D, (z;)| >n) = 0.
i sup (;gfgdl (%)IJ?) 0

ii) For all n > 0 and 0 > 0, we have the well-known inequality (see DEMBO & ZEITOUNI [4],
Lemma 1.2.15)

i | > <
lim sup &, log P ( €n 1rél%xd|Dn(wJ)| > n> <

n— o0

max {limsup enlogP ( €n max ne |fn($3) — f(z;)| > nc/é) ,limsup e, logP(|é, — ¢| > 6)} .
n—oo

n—00 1<j<d Kn(z;)

First, from Theorem 2,

|ﬁ@%¢@ﬂaﬂ®s—

I(El,...,wd)(u) _> —o0

limsup €, logP (w/sn max _ne inf
lullza>nc/é

n—o00 1<5<d Kn(T;)
when 6 — 0. Second, Lemma 5 yields for n > ng,
enlogP(|é, — ¢| > 6) < —asne, + e, 10g(3) = —o0
as n — 0o, since for n large enough,

NeEp > nlén%;lc% wy (z) > n/kn, = 0.

As a conclusion,

lim sup €, log P ( En lréljagxdwn(xjﬂ > 77) = —00.

n—00
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5 Applications

We provide four different illustrations of the general results established in the previous
section. We examine a kernel estimator, a particular case of wavelet estimator (the Haar
estimate), an orthogonal series method (the trigonometric series method) as well as a non-
orthogonal series method (the Faber-Shauder series method). First, the definition and the
basic properties of each estimate are recalled. Second, we rewrite the sufficient conditions
(H.1)-(H.7) in a more explicit way in these particular cases. Finally, we propose an
illustration of the behavior of each estimate on simulated data.

5.1 Four boundary estimates

In the sequel (b,,) is a sequence of positive real numbers tending to infinity and z,, . is the
center of the interval I, ,, » =1,...,k,. The unknown function f is supposed to be twice
continuously differentiable.

5.1.1 Kernel estimate

The kernel estimate is based on a nonparametric regression on the set of the bias corrected
extreme values (14 N, 1)Y,*,,r=1,...,k,. For z € [0,1], it writes

n,r’

k
N 1 = T — Ty 1
” = E K| ———— 1 Y, .1
f (x) hnkn =1 ( hn > ( * Nn,r) T (5 )

r

where K is a Parzen-Rosenblatt kernel, supposed to be bounded, positive, even, twice con-
tinuously differentiable and such that 2 — z?K(z) is integrable. (h,) is a sequence of
positive real numbers tending to zero called the window. It tunes the smoothing introduced
by the kernel. For a review on nonparametric regression, see HARDLE [19]. It is apparent
that (5.1) is a particular case of (2.1) in which &, ,(2) = by K (b (2 — 2p,r)), with by, = 1/hy,.
The estimate fn is at least twice differentiable since it inherits from the regularity of the
kernel K.

5.1.2 Haar estimate

Introduce a dyadic subdivision {J;, £ =b, +1,...,2b, + 1} of [0, 1] defined by J; = [c¢, d¢],
where ¢, = pg/2%71, dy = (p, + 1)/2%71, py and ¢, are the integers uniquely determined
by £ =2%"1 4+ p, and 0 < p; < 2% 1. The Haar basis (HAAR [15]) is the orthogonal basis
defined by:

a—1
ey = ]1[0’1], ey = QZT (HJM — ]IJM_H) , £>1.

We note S,,(f) the expansion of f on the Haar basis truncated to the (b, + 1) first terms

b
Sn(f)(z) = Zaeez(x), z € [0,1].
=0
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Limit theorems for boundary estimates 19

Each coefficient ag, £ =0, ..., b, is estimated by the random Riemann sum

kn 1 Y*
ﬁg,kn = e¢(Zn, 1+ ﬂ,
Do (1 5) %

leading to the estimator of f:

b k
) n 1 & 1\,
o) = D aenele) = g 3K (1+ 5= ) ¥ (52)

r=1

where K is the Dirichlet’s kernel associated to the Haar basis:

bn
Ki(z,y) =Y e@)ec(y), (z,y) € [0, 1)
£=0

It appears that (5.2) is a particular case of (2.1) with &k, .(z) = K} (@p,, ). Let us note
that, since the functions of the Haar basis are not continuous, the estimator is of f is also
not continuous in general.

5.1.3 Trigonometric estimate

Formally, the trigonometric estimate writes as the Haar estimate:

kn
fn(m) = i ZKE(%,MIU) (1 + Nl ) Y:,ra (5.3)

kn r=1 n,r

except that K. is the Dirichlet’s kernel associated to the trigonometric basis which is defined
by

eo(z) =1, ean_1(x) = V2 cos (2knz), ear(x) = V2sin (2knz), k> 1.
As previously, we have kp . (z) = K} (2, ). In this case, the estimator fr is C°.

5.1.4 Faber-Shauder estimate

Consider the dyadic subdivision introduced in Subsection 5.1.2. The Faber-Shauder is the
non-orthogonal basis of continuous functions defined by

efl(m) = I[[O,l](x)7 60(.’E) = wH[O,l]($)7 6[(1’) = 2(“(('%. - Cf)]IJu + (dl - x)]IJ2z+1)7 14 Z 1.

Note S, (f) the expansion of f on the Faber-Shauder basis truncated to the (b, + 2) first
terms

bn
Sp(f)(z) = Z agee(T), z € [0,1].

=—1
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20 Girard €& Menneteau

Each coefficient ag, £ = —1, ..., k, is estimated by

< 1\ Y
dl,k" = (bn + 1) de(mnﬂ") (1 + N, ) %a
r=1 n,r n

where gy is a piecewise linear function on [0, 1] that we do not precise here. Finally, the
estimator can be written as:

kn
ule) = 7 Do Kalwnra) (1+ 5= ) Vi 6.9

r=1
where K7 is the kernel defined by:

bn

K5(z,y) = (b +1) Y ge(@)ee(y), (w,y) € [0,1]%.
=—1

Tt appears that (5.4) is a particular case of (2.1) with k, .(z) = KF(pn,r, ). f, is a contin-
uous estimate of f.

5.2 Basic properties

In this paragraph, we provide bounds on the three following quantities:

k k
1 & n
ax nr(2)]5 - ;Hn,r(w), k() = ; i (2), 2 € [0,1]

that will reveal useful for rewritting the conditions (H.1)—(H.7). The results which are
collected here are classical ones so we omit their proofs.

5.2.1 Kernel estimate
It is clear that,
 fax |n,r(x)| = O (bn), Yz €[0,1].
Besides, under the condition b2 =0 (kn), Proposition 1 in GIRARD & JACOB [14] yields

kn
ki S hnn(z) = 1) = 0 (1/82) + 0 (B3 /k2) , ¥z €]0,1],
" or=1

and

K2(2) ~ Fnbn / " K2 (0)dt, Ve €10, 1] (5.5)
0
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5.2.2 Haar estimate
We introduce the following assumptions on the sequences (b,) and (k,):
bp+1=2%, b €N, ky=dp(bn+1), dneN. (5.6)

The first part of (5.6) is classical. It imposes that the number of terms in the expansion
Sn(z) is a power of two. The consequence of the second part of the condition is that for each
e {b,+1,...,2b, + 1}, Jy is exactly the union of d,, subintervals I, .. Now, let 2 € [0,1]
and £(x) such that x € Jy,). Under (5.6), the Dirichlet’s kernel reduces to

Kﬁ(m,xn’r) = (bn + I)H{wn,TEJz(z)}' (5.7)
We thus obtain, for all z € [0, 1]:

max |kn,r(z)| =1+ by,
1<r<kn

1 kn
7 n,r :1;
MZQKJ@

k2 (x) = kn(bp + 1). (5.8)

5.2.3 Trigonometric estimate

Suppose for convenience that b, is even. Then, the Dirichlet’s kernel can be explicitely
computed:

sin[(1 + bp)m(z — y)]

Ki(z,y) = sin [r(z — )] T#Y,
1+ by r=y,
and it follows that, for all z € [0, 1],
ax |knr(@)] =1+bn,
1 kn
. ; Knr(@) = 1| = O (b Inby/kn)

Besides, under the condition b, Inb, = o (ky), we have
K2(2) ~ kn(bn + 1), z € [0, 1].

For a proof, see for instance JACOB & SUQUET [23], equation (4.14).
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22 Girard €& Menneteau

5.2.4 Faber-Shauder estimate

Similarly to the Haar case, we suppose that the sequences (h,) and (k,) verify (5.6) where
d, is even. The kernel K¥ can be explicitely computed (see Proposition 1 in GARDES |[8])
although its expression is too heavy to be given here. The following results

12%)1(% |’€n,r(m)| =0 (bn) >

1 o
k_ Z’in,r(x) =1,
" or=1

1 &

2" kp(bp+1) — 7
(x € [0,1]) can be found in GARDES [§8], Lemma 2.

5.3 Convergence results

We first study the convergence of the centered estimates. Proposition 1 can be rewritten as:

Corollary 2 Suppose f is C2. Under assumptions of Table 1, the Haar, Faber-Shauder,
trigonometric and kernel estimates verify:
i) for all (z1,...,24) C [0,1],

ne .
P (fu(@s) — E(fa(z;)) 1< 5 < N(0,1),
{5~ Bin@ 125 < af 2 N @D
with kn(z;) < (bnkn)'/?, j=1,...,d.

it) for all (x1,...,24) C[0,1], and all e, | O such that by /k, = o (gn),

(Va2 (@) - B(fat@)) 1< < a}.

Tj

follows the large deviation principle in R? with speed (g,,) and good rate function I(u) =
lullga/2-

The notation &, (z;) < (byk,)'/? means that
0 < liminf ki (2;)/(bpkn)'/* < limsup kn(2;) /(bpkn)'/* < oo.

In the case of the Haar, kernel and trigonometric estimate, this reduces to kn(z;) ~
(bpky)'/?. The first line of assumptions of Table 1 ensures that the mean number of points
in each cell D, , converges to infinity. The second line of assumptions determines the mini-
mal amount of smoothing required on each interval I,, , for asymptotic normality. Finally,
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the third line of assumptions imposes that the mean number of points above m,, , in each
cell D, , converges to 0, so that the function f could be approximated by a constant on I, ..

Proof : Assumptions (H.1), (H.2) and (H.4) are easily verified thanks to the results of
the previous paragraph. Let us focus on assumption (H.3) and note

(n) = anT (@i)wnr(zj), 1 <i,j <d.

r=1

(n) _

It is clear that one always have 0; ;" =1, 1 <14 < d. The computation of ¢;; = lim (T( ™)

T—00 LV

i # j is done separately for each estimate.

e Haar estimate: Let £(x;) and £(z;) such that z; € Jy(,,) and x; € Jyy,;)- Then, in
view of (5.7),

K:(mza mn,r)K;I(xja -'L'n,r) = (bn + 1)2]I{zn,r€Jg(mi)}]I{wn,rng(mj)}-

Now, for n large enough, Jy(z,) N Jy(z;) = 0 and then 0(7;) =0. Thus g;; =1 if i = j,
and o;; = 0 otherwise. The case of the Faber-Shauder estimate is similar.

¢ Trigonometric estimate: Equation (4.35) of JACOB & SUQUET [23] entails o; ; = 0 for
i # j when by Inb, = o (ky).

o Kernel estimate: GIRARD & JACOB [14], Corollary 1 shows that o;; = 0 for ¢ # j
when b3/ = o (ky). n

The convergence of the estimates centered on the true function f is now derived from
Theorem 1 and Theorem 2 at the expense on additionary conditions on (b,) and (k).

Corollary 3 Suppose f is C?. Under assumptions of Table 2, the Haar, Faber-Shauder,
trigonometric and kernel estimates verify:
i) for all (z1,...,zq4) C [0,1],

nc
— )= f(@):1<j<
{5 - w1 <i<af 4 N D),
with kn(z;) < (bnka)Y?, j=1,...,d.

i) for all (x1,...,2q4) C[0,1], and all €, L O such that b, /k, = o0 (en),

s (e = £ 1< <a.

kn (T

{va

follows the large deviation principle in R with speed (€,) and good rate function I(u) =
lJul[Fa/2-
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Proof : Conditions (H.5) and (H.7) are straightfowardly verified thanks to the results
of paragraph 5.2. Let us focus on condition (H.6) and consider the different estimates
separately.

e Haar estimate: Let £(z) such that x € Jy,). In view of (5.7),

kn 1 kn
2 @@ ~mag) = (@)~ M), e
n r=1 n

r=1

< max sup |f(y) — man|
" yEJy(a)

and (5.8) concludes the proof. The case of the Faber-Shauder basis is similar.

e Trigonometric estimate: Consider the expansion

kn kn

% z an,r(m)(f(m) - mn,r) = (f([E) - Z K’n,r(x)’\n,r>
r=1 1 7'—k"

f(=) <E Zﬁn,r(a:) - 1)

kn
+ é ; Kn,r (-'L') (kn)\n,r - mn,r)-

_|_

The first term is bounded by GIRARD & JACOB [13], Proposition 2:

kn
F@) =D B (@A | = O (bpInbp/kn) + O (1/by) .

The second term is controlled with (H.5), and the third one by the Cauchy-Schwarz
inequality

kn
ki Z K/n,T(x)(kn)\n,r - mn,r) = O (K'"(m)/k?b/z) .
" or=1

e Kernel estimate: In a similar way,

1 kn 1 kn
E Z 'in,r(m)(f(x) — mn,r) = (f((l)) - E ’in,r(m)f(mn,r)>
r= 1 knr_
+ f(2) <E Z”n,r(z) - 1)
kn
+ i Z Kn,r(w) (f(xn,r) mn,r)
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The first term is bounded by GIRARD & JACOB [14], Proposition 1:

kn
F@) =Y kne(@) f (@) | = O (B3/k2) + O (1/8}) .
r=1

The second term is controlled with (H.5), and the third one by

k k
1 « 1 «—
= @) @nr) = m0) = (k— > wm) 0(1/k) = 0 (1/ks)
" or=1 ™ =1
and (5.5) concludes the proof. [ |

We conclude this investigation of the asymptotic properties of the estimates by providing
the optimal choices of the (b,) and (k,) sequences in Table 3 and the resulting convergence
rate of the estimate. From the asymptotic point of view, the kernel estimate is the better
one, and the trigonometric estimate is the worst. The Haar and Faber-Shauder estimates
share the same intermediary convergence rate. However, the convergence rate should not
be the only criterion for choosing the estimator. For instance, prior information on the
regularity of f can be a good indication for the choice of the estimator. Haar and Faber-
Shauder estimates are well-adapted for the estimation of non smooth boundaries whereas,
the trigonometric and kernel estimates are designed for regular boundaries. Besides, the
trigonometric estimate is a good candidate for the estimation of periodic functions f. This
kind of problem arises when a star shaped support has been reduced to the kind of domain
(1.1) studied here by the transformation from polar to cartesian coordinates (see JACOB
& ABBAR [22]). Let us also recall that the kernel estimate suffers from a boundary effects
leading to poor estimations of f at the boundaries of the interval. Nevertheless, simple and
efficient corrections exist, see e.g. GIRARD & JACOB [12]. We now illustrate the behaviour
of the estimates on simulations.

5.4 Numerical experiments

In this illustration, the sum of n = 200 independent Poisson processes with the same intensity
rate ¢ = 4 is simulated on the set S defined by (1.1) with

f(z) =[0.1 +sin (rz)] [1.1 — 0.5exp (—64(z — 0.5)*)],

for 2 € [0,1]. The unit interval is divided into k,, = 32 equidistant intervals. In the case of
the kernel estimate, we choose h,, = 0.025 for the smoothing parameter (leading to b,, = 40).
In the case of the Haar, Faber-Shauder and trigonometric estimates, we consider an expan-
sion of order b, = 15 of f in the corresponding basis. The results are presented in Figure 1
for comparison. In each case, the estimate fn is superimposed to the true function f and the
simulated point process. We also take profit of Theorem 1 to draw 90% confidence intervals
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for f(z) at 50 different locations. The qualitative differences between the four estimates ap-
pear clearly. The Haar estimate is piecewise constant (Figure 1(a)) and the Faber-Shauder
estimate is piecewise linear (Figure 1(b)). Also note on Figure 1(c) the oscillations of the
trigonometric estimate due to the periodic nature of the associated Dirichlet’s kernel. It is
apparent that the first peak is under-estimated by all the estimates. The smoothing induced
by the different kernels is not sufficient to overcome the missing of simulated points in the
peak. Nevertheless, the unknown function f is always included in the confidence intervals.

Haar & Faber-Shauder | Trigonometric Kernel
kn=o0(n) kn =o0(n) kn =o0(n)
by = 0 (kn) bplnby = o0(kn) | 552 = 0 (k)
n=o (k) n=o(k2) | n=o(k)

Table 1: Sufficient conditions (H.1)—(H.4) for the different estimators.
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Haar & Faber-Shauder Trigonometric Kernel
kn =0(n/lnn) kn =0(n/Inn) kn =o(n/lnn)
by = 0 (kn) bpInb, = o (k) b3/ = 0 (ky)
kn =0 (03/?)
n=o (k,ll/Qbi/Q) n=o (ki/zbip) n=o (kiﬂ/biﬂ)
n=o (14731/2/1’),1/2 lnbn)

Table 2: Sufficient conditions (H.1)—(H.7) for the different estimators.

Estimate | Haar & Faber-Shauder | Trigonometric Kernel

k, nl/2p? nd/5(Inn)2/3p2 | n2/3p2

b, nl/2 n2/5 nA/15
Ko/ n=1/2p, n=2/5(lnn)/3p, | n=8/15p,

Table 3: Optimal choices of (b,) and (k;,) sequences, and convergence rate of the estimators.
(pr) is an arbitrary positive sequence such that p, — oo and p, = o (Inn).
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Figure 1: Superimposition of the simulated point process, the function f to estimate (contin-
uous line) and the four estimates (dashed lines) obtained with the Haar (a), Faber-Shauder
(b), trigonometric (c¢) and kernel (d) methods. In each case, the vertical lines represent the
90% confidence intervals.
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6 Appendix

6.1 Multivariate central limit theorem and moderate deviations

In this part, we provide general theorems about the central limit property and the moderate
deviation principle of a sequence of random R? valued vectors

kn
On = an,rCn,r; n>1,
r=1

where (Wn,r )<, cp C R? and (Cn,r)1<p<p, are random variables such that:
(A1) (Cn,r)1<p<p, are centered and independent random variables.

(A-2) max E(¢,)—1|—0.

(A.3) There exists a covariance matrix ¥ in R? such that for all A € R?,

kn
> (Wi, Nga = AT

r=1

(Ad) max [warla =0 (1).

(A.5) limsup lim sup lggnﬂi (&, Ificn>a}) =0.

a—o0 n—oo

(A.6) There exists K > 0 such that

1

lim sup max max —]E( 15) <1.
n_mp >3 1<r<kn K40 [Grr|

Let us note that (A.6) implies (A.5).
Theorem 3 Under assumptions (A.1) — (A.5),
0, - N(0,Y).
Proof : We have to show that, for all A € R?,
(0, Npa <N (0, TATN) . (6.1)

Now, observe that (A.1)—(A.3) entail

kn
V({8 Nga) = D (W, NgaB(C2,) = "AZA+0(1).

r=1
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Hence, by Lindeberg Theorem (see e.g : DUDLEY [7], p. 248), it is easy to see that (6.1)
holds whenever for all £ > 0,

kn
. 2 2
lim sup Z (Wn,ry M) ga E (C"’T]I{lcn,r<wn,'r‘7)‘)}zd|>5}) =0.

n—00
r=1

Fix A € R?, e > 0 and a > 0. Using (A.4), we get for all n large enough and all 1 < r < k,
that

L ln i Cm e Apa|>er < Lilenrl>a}-

Hence,
kn
lirzljgop 7;1 (Wn,ry Nga E (Ci,r]l{kn,r (wn,r,A)Rd|>s})
kn
< limsup (; (Wn,r, A)fw) \Dax B (¢rrLicn r1>a)
<" ASAlimsup max E (G g, .i>ap)
and we get the result by (A.5) when a 1 oco. u

Let €, | 0, T: R? — [0, +oc] such that for all @ > 0, {I < a} is compact and recall that :

Definition 1 A sequence of R? valued random variable (©,) is said to follow the large
deviation principle in R with speed (,,) and good rate function I whenever for every set

AeB(RY),

—inf {I(u) tu € ;1} <liminfe,logP (0, € A)
n—oo
<limsupe,logP (0, € A)

n—oo

< —inf{I(u):u€ A},

where A (resp. A) denotes the interior (resp. closure) of A in R?.

Assume that ¥ is regular and define

1
Irn:uelR 3 tuy .
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Theorem 4 Assume that (A.1) — (A.4) and (A.6) hold, where the matriz ¥ in (A.3) is
reqular, then, for all sequences €, | 0 such that

Max ||wnr[lge = 0(VEn) (6.2)

1<r<kn,

(,/6n0n) follows the large deviation principle in R? with speed (¢,,) and good rate function
Is.

Proof : Denote by

A eR s g, logE (exp (e,," (A, v/Enbn)ga)) »

and set
A:XeR! %t)\E)\.
Then,
kn
An(A) = ¢y Zlog (14 an,y (A) @+ Bnyr (V)
r=1
with
_ <A7wn,7‘)]%kd
an,r (A) = T
and
+oo £—2 ,¢
<)\7 wn ’!‘)Rd n,Tr
B (V) =E(2,) —1+2E (7 - )
(¢, > () 5
Now, by (6.2),

max o A) = 0asntoo.
 fax. nr (A) 1

Moreover, by (A.2), (A.6) and (6.2), for all large n,

+oo B —2 Cl
(max By V| < max [E(G) —1[+2 max ZZ‘; ‘en” O W r g ]E( a )
400 - ¢
<o(1)+ 2K ; (K ”)‘”Rd 5;1/212?]{% ||wn,r||Rd>

<o (1) +4K* [Wlgasy "/ max [wnsllga = 0(1).
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Therefore, by Lemma 8 below and (A.3),

kn kn kn kn
1
En Z an,r (A) +o0 <5n Z Qn,r ()\)) =3 Z A Wnr)aa+0 (Z (A, wnm)éd)
r=1 r=1

r=1 r=1
=AN)+o(1).

An (V)

Il

Hence, by the Gartner-Ellis Theorem (see Theorem 2-3-6 of DEMBO & ZEITOUNI [4], p.44),
(,/enan) follows the large deviation principle in R? with speed (e,) and good rate function

A* (u) = sup {(\, u)ga — A (N) : A € R?}

and it is easily seen that A* = Iy. [ ]

6.2 Technical lemmas

The following facts have been useful in our proofs :

Lemma 7 For every £ > 1 and every random variables x1, ..., xp in L* (P),

E(|X1 + ... +Xp|l) <p lrgaé(IE(|XJ| ) .

In particular,
£ V3 £
E(le —E(x)| ) <2 IE(IX1| ) :
The proof is a straightforward consequence of the L (P) norm convexity.

Lemma 8 Consider triangular arrays (an,r); <, <, C RY and (Bnr), <<, C R such that :

ap, :zlénTi)lcc: oy — 0asn T oo,
and
Brn = max |ﬂnr|—>0asnToo
1<r<
Then,

kn
Zlog(l-l—oznT (14 Bnr)) Zanr-l-o(z:anr).
r=1
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Proof : Since for all © > 0,
0 <u—log(l+u)<u?

we get, for all large n,

kn kn kn
> log (1+ans (1+ fn,r)) Z Zam 1+ B
r=1 r=1 r=1
kn
< (2an + ) Y Cnr,
r=1
which gives the result. [ |
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