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e)Abstra
t Rare asso
iation rules 
orrespond to rare, or infrequent, itemsets, as opposedto frequent ones that are targeted by 
onventional pattern miners. Rare rules re�e
t reg-ularities of lo
al, rather than global, s
ope that 
an nevertheless provide valuable insightsto an expert, espe
ially in areas su
h as geneti
s and medi
al diagnosis where some spe
i�
deviations/illnesses o

ur only in a small number of 
ases. The work presented here is mo-tivated by the long-standing open question of e�
iently mining strong rare rules, i.e., ruleswith high 
on�den
e and low support. We also propose an e�
ient solution for �nding theset of minimal rare itemsets. This set serves as a basis for generating rare asso
iation rules.Key words: data mining; knowledge dis
overy in databases (kdd); itemset extra
tion;rare itemsets; rare asso
iation rules; rare item problemSzathmary L, Valt
hev P, Napoli A. Generating rare asso
iation rules using the minimalrare itemsets family. Int J Software Informati
s, 2010, 4(3): 219�238. http://www.ijsi.org/1673-7288/4/i56.htm1 Introdu
tionConventional pattern miners target the frequent itemsets and rules in a dataset.These are believed to re�e
t the globally valid trends and regularities dug in thedata, hen
e they typi
ally support modelling and/or predi
tion. Yet in many 
asesglobal trends are known or predi
table beforehand by domain experts, therefore su
hpatterns do not bear mu
h value to them. In 
ontrast, regularities of lo
al s
ope, i.e.,
overing only a small number of data re
ords, or transa
tions, may be of higher interestas they 
ould translate less well-known phenomena, e.g., 
ontradi
tions to the generalbeliefs in the domain or notable ex
eptions thereof [16℄. This is often true in areas su
has geneti
s and medi
al diagnosis where many deviations / symptom 
ombinations willonly manifest in a small number of patient 
ases. Hen
e the potential of the methodsfor mining the 
orresponding patterns and rules for supporting a more fo
used analysisof the re
orded biomedi
al data. The present paper is a revised and extended versionof [23℄ and [24℄.1.1 Motivating examplesA �rst 
ase study for atypi
al patterns and rules pertains to a Fren
h biomedi
aldatabase, the Stanislas 
ohort [17℄. The Stanislas 
ohort 
omprises the medi
alCorresponding author: Laszlo Szathmary; e-mail: Szathmary.L�gmail.
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ords of a thousand presumably healthy Fren
h families. In a parti
ular problemsettings, the medi
al experts are interested in 
hara
teristi
s and relations that per-tain to a very small number of individuals. For instan
e, a key goal in this 
ontextis to investigate the impa
t of geneti
 and environmental fa
tors on diversity in 
ar-diovas
ular risk fa
tors. Interesting information to extra
t from the 
ohort databasein
ludes the patient pro�les asso
iating geneti
 data with extreme or borderline val-ues of biologi
al parameters. However, su
h types of asso
iations should be atypi
alin healthy 
ohorts.To illustrate the 
on
ept of rare rules and its potential bene�ts, assume we wantto target the 
auses for a group of 
ardiovas
ular diseases (CVD) within the Stanis-las 
ohort. If a frequent 
ombination of CVD and a potential fa
tor is found, thenthe fa
tor may be reasonably quali�ed as a fa
ilitator for the disease. For instan
e,a frequent itemset �{elevated 
holesterol level, CVD}� and a strong asso
iation rule�{elevated 
holesterol level}⇒ {CVD}� would empiri
ally validate the widely a
knowl-edged hypothesis that people with high 
holesterol level are at serious risk of develop-ing a CVD. In 
ontrast, if the itemset involving a fa
tor and CVD is rare, this wouldsuggest an inhibiting e�e
t on the disease. For instan
e, the rareness of the itemset�{vegetarian, CVD}� would suggest that a good way to redu
e the CVD risk is toobserve a vegetarian diet.The se
ond 
ase study pertains to pharma
ovigilan
e, a domain of pharma
ol-ogy dedi
ated to the dete
tion, monitoring and study of adverse drug e�e
ts. Givena database of 
lini
al re
ords together with taken drugs and adverse e�e
ts, miningrelevant itemsets would enable a formal asso
iation between drugs adverse e�e
ts.Thus, the dete
ted patterns of (
ombinations of) drugs with undesired (or even fatal)e�e
ts on patients 
ould provide the basis for an informed de
ision as to the with-drawal or 
ontinuan
e of a given drug. Su
h de
ision may a�e
t spe
i�
 patients,part of or even in the entire drug market (see, for instan
e, the withdrawal of thelipid-lowering drug Cerivastatin in August 2001). Yet in order to make appear thealarming patterns of adverse e�e
ts, the benign ones, whi
h 
ompose the bulk of thedatabase 
ontent, should be �ltered out �rst. On
e again, there is a need to skipthe typi
al phenomena and to fo
us on less expe
table ones. It is noteworthy thatsimilar reasoning may be abstra
ted from unrelated problem domains su
h as bankfraud dete
tion where fraudulent behaviour patterns manifest in only a tiny portionof the transa
tion database 
ontent.1.2 State of the artPattern mining based on the support metri
s is biased upon the dete
tion oftrends that are � up to a toleran
e threshold � globally valid. Hen
e a straightforwardapproa
h to the dete
tion of atypi
al and lo
al regularities has been to relax the 
rispand uniform minimal support 
riterion for patterns [26℄.In a naïve problem settings, the minimal support 
ould be de
reased su�
ientlyto in
lude in the frequent part of the pattern family all potentially interesting regu-larities. Yet this would have a devastating impa
t on the performan
es of the patternminer on top of the additional di�
ulties in spotting the really interesting patternswithin the resulting huge output (known as the rare item problem [15, 29℄).



Laszlo Szathmary, et al.: Generating rare asso
iation rules using the minimal ... 3A less uniform support 
riterion is designed in [29℄ where the proposed methodRSAA (Relative Support Apriori Algorithm) relies on item-wise minimal supportthresholds with user-provided values. RSAA outputs all itemsets, and hen
e rules,having their support above at least one support threshold 
orresponding to a memberitem. Thus, the output still 
omprises all frequent itemsets and rules together withsome, but not ne
essarily all, atypi
al ones.A higher degree of automation is a
hieved inMSapriori (Multiple Supports Apri-ori) [15℄ by modulating the support of an itemset with the supports of its memberitems. Thus, the support is in
reased by a fa
tor inversely proportional to the lowestmember support, whi
h, on the bottom line in
reases the 
han
es of itemsets involv-ing infrequent items to nevertheless make it to the frequent part of the pattern family.On
e more, the overall e�e
t is the extension of the frequent part in the pattern familyby some infrequent itemsets.In [28℄, Wu et al. proposes an extension of the traditional asso
iation rule miningframework to in
lude rules of forms A ⇒ ¬B, ¬A ⇒ B, and ¬A ⇒ ¬B, whi
h indi
atenegative asso
iations between itemsets. Negative asso
iation rules are obtained usinginfrequent itemsets. In 
ontrast to positive asso
iation rules, negative asso
iation rulesprovide information about the absen
e of 
ertain itemsets. Emerging patterns areitemsets whose support in
reases signi�
antly from one dataset to another. Emergingpatterns are said to 
apture emerging trends in time-stamped databases, or to 
apturedi�erentiating 
hara
teristi
s between 
lasses of data. Emerging patterns 
an havelow support in datasetD1 and high support in D2, thus they 
an yield some important
hanges between the two datasets. See [19℄ for a survey on emerging patterns. In [20℄,the authors are interested in the extra
tion of 
on
epts with smaller support in a givenlatti
e. This work is 
arried out in the framework of Formal Con
ept Analysis [8℄ andis related to our work. However, our sear
h for rare itemsets and rare asso
iation rules(with high 
on�den
e) is dire
tly performed on data rather than exploring 
on
eptswithin a 
on
ept latti
e.Our own approa
h is a more radi
al departure from the standard pattern miningsettings as it fo
uses dire
tly on the infrequent part of the pattern family that be
omesthe mining target. The underlying key notion is the rare itemset (rule) de�ned asan itemset (rule) with support lower than the threshold. Apriori-Inverse[10℄, andMIISR (Mining Interesting Imperfe
tly Sporadi
 Rules) [11℄ are two methods fromthe literature that exploit the same rarity notion, yet the former would ex
lusivelymine perfe
tly rare itemsets (i.e., having ex
lusively rare subsets) while the latterslightly relaxes this overtly 
risp 
onstraint. This, on the bottom line, amounts toexploring rare patterns within the order �lter above the rare singleton itemsets (i.e.,rare items) in the itemset latti
e while ignoring rare itemsets mixing both rare andfrequent items.Here we propose a framework that is spe
i�
ally dedi
ated to (i) the extra
tionof rare itemsets and (ii) the generation of rare asso
iation rules. It is based on anintuitive yet formal de�nition of rare itemset and rare asso
iation rule. Our goalis to provide a theoreti
al foundation for rare pattern mining and rare asso
iationrule generation, with de�nitions of redu
ed representations and 
omplexity resultsfor mining tasks, as well as to develop an algorithmi
 tool suite (within the Coronproje
t [25℄) together with the guidelines for its use.
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s, Vol.4, No.3, September 2010It is noteworthy that playing with minimal support is not the only way to ap-proa
h the mining of atypi
al regularities. Thus, di�erent statisti
al measures may beused to assess atypi
ality of patterns that are not bound to the number of o

urren
es.Moreover, the availability of an expli
itly expressed body of expert knowledge or ex-pe
tations/beliefs (e.g., as general rules) for a parti
ular dataset or analysis problemenables a more fo
used pattern extra
tion where an unexpe
ted or ex
eptional pat-tern is assessed with respe
t to a generally admitted one (a relevant dis
ussion thereofmay be found in [27℄).Rare itemsets, similarly to frequent ones, 
ould be easily turned into rules, i.e. bysplitting them into premise and 
on
lusion subsets. The resulting rules are ne
essarilyrare but their 
on�den
e would vary. Only rules of high 
on�den
e 
an be reasonably
onsidered as regularities.The extra
tion of rare itemsets and rules presents signi�
ant 
hallenges for datamining algorithms [26℄. In parti
ular, algorithms designed for frequent itemset miningare inadequate for extra
ting rare asso
iation rules. Therefore, as it was argued in[25℄, new spe
i�
 algorithms have to be designed. The problem with 
onventionalfrequent itemset mining approa
hes is that they have a (physi
al) limit on how lowthe minimum support 
an be set. We 
all this absolute limit the barrier : the barrieris the absolute minimum support value that is still manageable for a given frequentitemset mining algorithm in a given 
omputing environment. The exa
t position(value) of the barrier depends on several variables, su
h as: (1) the database (size,density, highly- or weakly-
orrelated, et
.); (2) the platform (
hara
teristi
s of thema
hine that is used for the 
al
ulation (CPU, RAM)); (3) the software (e�
ient / lesse�
ient implementation), et
. Conventional sear
h te
hniques are always dependenton a physi
al limit that 
annot be 
rossed: it is almost 
ertain that the minimumsupport 
annot be lowered to 1.1 The questions that arise are: how 
an the barrier be
rossed; what is on the other side of the barrier; what kind of information is hidden;and mainly, how to extra
t interesting asso
iation rules from the negative side of thebarrier.1.3 ContributionIn order to generate rare asso
iation rules, �rst rare itemsets have to be ex-tra
ted. In [18℄ it is stated that the negative border of frequent itemsets 
an be foundwith levelwise algorithms. In the next se
tion, �rst we propose a straightforwardmodi�
ation of the Apriori algorithm for this task 
alled Apriori-Rare. During thelevelwise sear
h, Apriori 
omputes the support of minimal rare itemsets (mRIs), i.e.rare itemsets su
h that all proper subsets are frequent. Instead of pruning the mRIs,Apriori-Rare retains them. After Apriori-Rare we introdu
e an optimized method
alled MRG-Exp that limits the exploration to frequent generators only. Generatorsare itemsets that have no proper subsets with the same support. Experimental re-sults reveal that MRG-Exp is more e�
ient on dense, highly 
orrelated datasets. Inaddition, we show that the output of the two algorithms are identi
al.In the se
ond part of the paper, we fo
us on the sear
h for valid rare asso
iationrules, i.e. rules with low support and high 
on�den
e. On
e all rare itemsets areavailable, in theory it is possible to generate all valid rare asso
iation rules. However,
1 When the absolute value of minimum support is 1, then all existing itemsets are frequent.
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iation rules using the minimal ... 5this method has two drawba
ks. First, the restoration of all rare itemsets is a verymemory-expensive operation due to the huge number of rare itemsets. Se
ond, havingrestored all rare itemsets, the number of generated rules would be even more. Thus,the same problem as in the 
ase of frequent valid asso
iation rules has to be fa
ed:dealing with a huge number of rules of whi
h many are redundant and not interestingat all.Frequent itemsets have several 
ondensed representations, e.g. 
losed itemsets[21℄, generators representation [13℄, free-sets [1℄, non-derivable itemsets [5℄, et
. How-ever, from the appli
ation point of view, the most useful representations are 
loseditemsets and generators. Among frequent asso
iation rules, bases are spe
ial rulesubsets from whi
h all other frequent asso
iation rules 
an be restored with a properinferen
e me
hanism. The set of minimal non-redundant asso
iation rules (MNR)is parti
ularly interesting, be
ause it is a lossless, sound, and informative representa-tion of all valid (frequent) asso
iation rules [14℄. Moreover, these frequent rules allowone to dedu
e a maximum of information with minimal hypotheses. A

ordingly, thesame sort of subset has been sear
hed for rare rules, namely the set of minimal rareitemset rules, presented hereafter.The present work is motivated by the long-standing open question of devisingan e�
ient algorithm for �nding rules that have a high 
on�den
e together with alow support. This work shows a number of 
hara
teristi
s that are of importan
e.First, valid rare asso
iation rules 
an be extra
ted e�
iently. Se
ond, an interestingsubset of rare asso
iation rules 
an be dire
tly 
omputed, similar to the set of (fre-quent) MNR rules in the 
ase of frequent rules. Third, the method is rather easy toimplement.The paper is organized as follows. The basi
 
on
epts and de�nitions for frequentand rare itemsets together with the 
omputationally motivated results are presented inSe
tion 2. Our two methods for 
omputing the minimal rare itemsets are in
luded inthe same se
tion. Then, Se
tion 3 details the generation of informative rare asso
iationrules from rare itemsets. A detailed experimental study of the algorithms is providedin Se
tion 4. Finally, Se
tion 5 
on
ludes the paper.2 Frequent and Rare ItemsetsConsider the following 5 × 5 sample dataset: D = {(1, ABDE), (2, AC),
(3, ABCE), (4, BCE), (5, ABCE)}. Throughout the paper, we will refer to thisexample as �dataset D� .2.1 Basi
 
on
eptsWe 
onsider a set of obje
ts or transa
tions O = {o1, o2, . . . , om}, a set of at-tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O ×A. A set of items is
alled an itemset. Ea
h transa
tion has a unique identi�er (tid), and a set of trans-a
tions is 
alled a tidset. The tidset of all transa
tions sharing a given itemset Xis its image, denoted t(X). For instan
e, the image of {A,B} in D is {1, 3, 5}, i.e.,
t(AB) = 135 in our separator-free set notation. The length of an itemset X is |X |,whereas an itemset of length i is 
alled an i-itemset. The (absolute) support of anitemset X , denoted by supp(X), is the size of its image, i.e. supp(X) = |t(X)|.
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s, Vol.4, No.3, September 2010Support is a prime measure of interest for itemsets: one is typi
ally � but notex
lusively � interested in regularities in the data that manifest in re
urring patterns.Thus, intuitively, the itemsets of higher support are more attra
tive. Formally, thefrequent itemset mining assumes a sear
h spa
e for interesting patterns that 
orre-spond to the Boolean latti
e B(2A) of all possible itemsets (see Figure 1). The latti
eis separated into two segments or zones through a user-provided �minimum support�threshold, denoted bymin_supp. Thus, given an itemset X , if supp(X) > min_supp,then it is 
alled frequent. Dually, if a maximal support threshold max_supp is pro-vided then an itemset P su
h that supp(P ) 6 max_supp is 
alled rare (or infrequent).Frequent itemsets (FIs) and rare itemsets belong to two mutually 
omplementarysubsets of the powerset 2A that further represent 
ontiguous zones of the latti
e B(2A).In the te
hni
al language of latti
e theory [6℄, these zones represent an order ideal (ordownset) and an order �lter (or upset), respe
tively, whi
h means that a subset ofa frequent itemset is ne
essarily frequent and, dually, a superset of a rare itemset isne
essarily rare. In the latti
e in Figure 1, the two zones 
orresponding to a supportthreshold of 3 are separated by a solid line. For example, the itemsets {A}, {AB}, or{BE} are frequent whereas {D}, {BD}, or {ACD} are rare.The rare itemset family and the 
orresponding latti
e zone is the target stru
tureof our study. It may be further split into two parts, the itemsets of support zero,hereafter 
alled zero itemsets2 (X with supp(X) = 0), on the one hand, and all otherrare itemsets, on the other hand. For instan
e, {BCD} is a zero itemset whereas {D}is a non-zero rare itemset.It is noteworthy that the overall split of the latti
e into three �stripes� depends forits exa
t shape on the 
hosen value for min_supp. Furthermore, it 
an be generalizedto n stripes by providing an ordered sequen
e of n − 1 values. Typi
ally, we haveassumed above that all itemsets 
an either be rare or frequent, but this needs not toalways be the 
ase. Thus, one 
an have two separate threshold values, one for ea
hfamily, thus leaving a possibly void intermediate zone of neither-frequent-nor-rareitemsets.Whatever the exa
t number of thresholds and zones, ea
h zone is delimited bytwo subsets, the maximal elements and the minimal ones, respe
tively. For instan
e,the minimal frequent itemset is the empty set (whose support is |D|) whereas thefamily of maximal frequent itemsets depends on min_supp. Similarly, the uniquemaximal rare itemset is I whi
h is usually, but not invariably, a zero itemset.The above intuitive ideas are formalized in the notion of a border introdu
ed byMannila and Toivonen in [18℄. A

ording to their de�nition, the maximal frequentitemsets 
onstitute the positive border of the frequent zone whereas the minimal rareitemsets form the negative border of the same zone. Obviously, the same holds forthe border between non-zero and zero itemsets as well.Equivalen
e Class. An equivalen
e relation is indu
ed by t on the power-setof items ℘(A): equivalent itemsets share the same image (X ∼= Z i� t(X) = t(Z))[4℄. Consider the equivalen
e 
lass of X , denoted [X ], and its extremal elementsw.r.t. set in
lusion. [X ] has a unique maximum (a 
losed itemset), and a set ofminima (generator itemsets). A singleton equivalen
e 
lass has only one element.The following de�nition exploits the monotony of support upon set in
lusion in ℘(A):
2 Not to be 
onfused with the empty set.
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iation rules using the minimal ... 7De�nition 2.1. An itemset X is 
losed if it has no proper superset with thesame support. An itemset Z is generator if it has no proper subset with the samesupport.A 
losure operator underlies the set of 
losed itemsets; it assigns to X the max-imum of [X ] (denoted by γ(X)). Naturally, X = γ(X) for 
losed X . Generators,a.k.a. key-sets in database theory, represent a spe
ial 
ase of free-sets [1℄. The follow-ing property, whi
h is widely known in the domain, basi
ally states that the generatorfamily is a downset within the Boolean latti
e 〈℘(A),⊆〉:Property 2.1. Given X ⊆ A, if X is a generator, then ∀Y ⊆ X , Y is agenerator, whereas if X is not a generator, ∀Z ⊇ X , Z is not a generator.
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Figure 1. The powerset latti
e of dataset D.2.2 Computationally motivated resultsIn order to ground an e�e
tive and e�
ient 
omputation pro
edure for a parti
-ular zone, e.g., the frequent itemset family, one must provide a 
hara
terization of itsmembers. Moreover, if the 
omputation is done levelwise, i.e., by visiting iterativelylatti
e levels that are made of itemsets of a �xed size, one may also need a 
hara
-terization of the zone border(s). Indeed, if the zone 
omprises none of the latti
eextremal nodes, i.e., ∅ and A, as is the 
ase of the rare itemset zone, one needs to�rst pinpoint the starting points of the zone exploration. These starting points aretypi
ally the extremal elements, either maximal or minimal, i.e., the positive borders.Furthermore, the 
omputation would typi
ally need to traverse a neighbor zone, hen
ethe negative border of the target zone must also be 
omputed.We 
onsider here a 
omputation of the rare itemsets that approa
hes them start-ing from the latti
e bottom, i.e., from the frequent zone. Hen
e we need a 
hara
teri-zation of what is widely known as the positive and the negative border of the frequent
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s, Vol.4, No.3, September 2010itemsets, and 
orresponds for us to the negative lower border and the positive lowerborder of the rare itemsets, respe
tively. Moreover, should one need more than simplythe rare itemsets on the border, the adverse upper border must be 
hara
terized aswell.First, the negative lower border of rare itemsets is a stru
ture known from theliterature. The 
hara
terization of its members, the maximal frequent itemsets, isstraightforward:De�nition 2.2. An itemset is amaximal frequent itemset (MFI) if it is frequentbut all its proper supersets are rare.Se
ond, the positive lower border of rare itemsets, i.e. the set of minimal rareitemsets is de�ned dually:De�nition 2.3. An itemset is a minimal rare itemset (mRI) if it is rare butall its proper subsets are frequent.There are at least two possibilities for rea
hing the mRI family from the latti
ebottom node that we dis
uss in the next subse
tions. On the one hand, as we indi
atedabove, a levelwise sear
h listing all frequent itemsets up to the MFIs represents astraightforward solution. Indeed, the levelwise sear
h yields as a by-produ
t all mRIs[18℄. On the other hand, the 
omputation of MFIs has been ta
kled by dedi
atedmethods, hen
e an alternative solution will be to extra
t these itemsets dire
tly andthen use them as starting point in the 
omputation of the mRIs, e.g., using thealgorithm in [3℄. The latter task is known to be 
omputationally hard as it amountsto 
omputing the minimal transversals of a hypergraph [2℄.Hen
e we prefer a di�erent optimization strategy that still yields mRIs whiletraversing only a subset of the frequent zone of the Boolean latti
e. It exploits theminimal generator status of the mRIs. In Figure 1, the downset of frequent generatorsis delimited by a dashed line. For instan
e, knowing that {BC} is a frequent generator,{B} and {C} are ne
essarily frequent generators too. By Property 2.1, frequentgenerators (FGs) 
an be traversed in a levelwise manner while yielding their negativeborder as a by-produ
t. Now, it is easy to see that all mRIs are part of the negativeborder of frequent generators. To that end, it is enough to observe that mRIs are infa
t generators:Proposition 2.1. All minimal rare itemsets are generators.Thus, while there might well be other elements in the negative border that are notgenerators, e.g., frequent itemsets other than generators, all mRIs will ne
essarily layon this border. More spe
i�
ally, all the rare itemsets on that border will ne
essarilybe minimal for their zone.It remains now to provide an e�
ient 
riterion for re
ognizing frequent genera-tors. The following property is a redu
tion of the initial de�nition to the immediateprede
essors of a generator in the latti
e (see [24℄):Proposition 2.2. An itemsetX is a generator i� supp(X) 6= mini∈X(supp(X\
{i})).The property says that in order to de
ide whether a 
andidate set X is a gener-ator, one needs to 
ompare its support to the support of its immediate prede
essorsin the latti
e, i.e., the subsets of size |X | − 1. Obviously, generators do not admitprede
essors of the same support.



Laszlo Szathmary, et al.: Generating rare asso
iation rules using the minimal ... 9The equivalen
e of the above results 
an be established for the upper border ofthe rare non-zero zone of the latti
e. Thus, minimal zero generators 
an be de�nedas: De�nition 2.4. A minimal zero generator (mZG) is a zero itemset whoseproper subsets are all non-zero itemsets.For instan
e, in Figure 1 there is only one mZG element, {CD}. Finally, it isnoteworthy that both sides of the border between frequent and rare itemsets play dualrole in their respe
tive zones. Indeed, beside being extremal elements, i.e., maximaland minimal, respe
tively, they 
onstitute redu
ed representations for these zones aswell. For instan
e, to extra
t the entire family of frequent itemsets from the MFIs,one only needs to generate all possible subsets thereof. Conversely, if all rare itemsets,i.e., zero and non-zero ones, are ne
essary, a dual te
hnique will work that amountsto generating all supersets of mRIs [22℄. Should zero itemsets be unne
essary, thenminimal zero generators would work as stop 
riterion: only supersets of mRIs thatdo not in
lude a minimal zero generator will be kept. Provided the support of thesesets is required, it 
an be easily 
omputed along a single pass through the database.The next two subse
tions present the two methods for mRI 
omputation.2.3 Finding mRIs with a naïve approa
hAs pointed out by Mannila and Toivonen in [18℄, the easiest way to rea
h thenegative border of the frequent itemset zone, i.e., the mRIs, is to use a levelwisealgorithm su
h as Indeed, albeit a frequent itemset miner, Apriori yields the mRIs asa by-produ
t. The mRIs are milestones in the exploration as they indi
ate that theborder of the frequent zone has been 
rossed.The overall prin
iple of Apriori is rather intuitive: frequent itemsets are gener-ated levelwise, at ea
h iteration i targeting the itemset of length i, i.e., the ith levelabove the latti
e bottom node. The algorithm generates a set of 
andidates that arefurther mat
hed against the database to evaluate their support in one database passper iteration. To avoid redundant 
he
ks, two te
hniques are used: (i) 
andidatesat level i + 1 are generated by joining frequent i-itemsets that share i − 1 of theiritems, thus in
reasing the 
han
e of the result being frequent, and (ii) 
andidatesare pruned a priori , i.e., before support 
omputing, by eliminating those having arare subset (of size i− 1). In doing that, there is no need to expli
itly represent rareitemsets: rather, all i− 1 subsets of a 
andidate are generated dynami
ally and theirpresen
e in the frequent itemset storage stru
ture is tested (absen
e means the subset,hen
e the 
andidate too, is rare).Apriori-Rare is a slightly modi�ed version of Apriori that stores the mRIs. Thus,whenever an i 
andidate survives the frequent i− 1 subset test, but proves to be rare,it is kept as an mRI. For example, following the exe
ution of Apriori on dataset D,we get the following result. In C1 (the set of 1-long 
andidates), there are 5 itemsets({A}, {B}, {C}, {D}, and {E}) of whi
h {D} is rare. In C2 all itemsets are frequent({AB}, {AC}, {AE}, {BC}, {BE}, and {CE}). In C3 ({ABC}, {ABE}, {ACE}, and{BCE}) there are two rare itemsets namely {ABC} and {ACE}. Saving the threerare itemsets, one 
an obtain the following minimal rare itemsets at the end: {D},{ABC}, and {ACE}.
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s, Vol.4, No.3, September 2010Algorithm MRG-Exp:Des
ription: �nding minimal rare generators e�
ientlyInput: dataset plus min_suppOutput: FGs plus mRGs1) CG1 ← {1-itemsets};2) SupportCount(CG1); //requires one database pass3) loop over the rows of CG1 (c) {4) c.pred_supp ← ∅.supp; //i.e., c.pred_supp ← |O|;5) if (c.pred_supp = c.supp) c.key ← false;6) else c.key ← true;7) }8) RG1 ← { r ∈ CG1 | (r.key=true) ∧ (r.supp < min_supp) };9) FG1 ← { f ∈ CG1 | (f .key=true) ∧ (f .supp > min_supp) };10) for (i← 1; true; i← i+ 1)11) {12) CGi+1 ← GenCandidates(FGi);13) if (CGi+1 = ∅) break; //i.e., break out from the �for� loop14) SupportCount(CGi+1); //requires one database pass15) loop over the rows of CGi+1 (c)16) {17) if (c.pred_supp != c.supp) { //i.e., if c is a generator18) if (c.supp < min_supp) RGi+1 ← RGi+1 ∪ {c};19) else FGi+1 ← FGi+1 ∪ {c};20) }21) }22) }23) GF ←
⋃

i
FGi; //frequent generators24) GMR ←

⋃
i
RGi; //minimal rare generators2.4 Finding mRIs in an e�
ient wayFollowing Proposition 2.1, we may avoid exploring all frequent itemsets: instead,it is su�
ient to look after frequent generators only. In this 
ase, mRIs, whi
h arerare generators as well, 
an be �ltered among the negative border of the frequentgenerators.For �nding minimal rare generators, we fo
us ex
lusively on frequent generatorsand their downset in the latti
e (see Algorithm MRG-Exp). Thus, frequent i-longgenerators are joined to 
reate (i+1)-long 
andidates. These undergo a series of tests.On the one hand, the generator status is established following Proposition 2.2 withthe additional 
ondition that all subsets of the 
andidate must be frequent generators.Thus, non-generator frequent itemsets and non-minimal rare itemsets are dis
arded.Next, frequen
y test against the database is used to separate frequent from (minimal)rare generators.
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CG1 pred_supp key supp{A} 5 yes 4{B} 5 yes 4{C} 5 yes 4{D} 5 yes 1{E} 5 yes 4

RG1 supp{D} 1 FG1 supp{A} 4{B} 4{C} 4{E} 4
CG2 pred_supp key supp{AB} 4 yes 3{AC} 4 yes 3{AE} 4 yes 3{BC} 4 yes 3{BE} 4 � 4{CE} 4 yes 3

RG2 supp
∅

FG2 supp{AB} 3{AC} 3{AE} 3{BC} 3{CE} 3
CG3 pred_supp key supp{ABC} 3 yes 2{ABE} 3 � 3{ACE} 3 yes 2 RG3 supp{ABC} 2{ACE} 2 FG3 supp

∅

CG4 pred_supp key supp
∅ Figure 2. Exe
ution of the MRG-Exp algorithm.The above reasoning is partly embedded into the GenCandidates fun
tion whi
hhas three-fold e�e
t. First, it produ
es the (i+1)-long 
andidate generators, using the

i-long frequent generators in the FGi table. Se
ond, all 
andidates having an i-longsubset whi
h is not in FGi are deleted. In this way, non-minimal rare itemsets arepruned, and only potential generators are kept. Third, the fun
tion determines thepred_supp values of the 
andidates, i.e., the minimum of the supports of all i-longsubsets.Later in the pro
ess, the pred_supp is 
ompared to the a
tual support of a 
an-didate. If both values are di�erent then the 
andidate is a true generator. Moreover,depending on its support, it is either a frequent generator or a minimal rare one, i.e.,an mRI.The exe
ution of MRG-Exp on dataset D with min_supp = 3 is illustrated inFigure 2. The algorithm �rst performs one database s
an to 
ount the supports of1-long itemsets. The pred_supp 
olumn indi
ates the minimum of the supports of all(i− 1)-long frequent subsets. Itemsets of length 1 only have one frequent subset, theempty set. By de�nition, the empty set is in
luded in every obje
t of the database,thus its support is 100%. Comparing the support and pred_supp values, it turns outthat all 1-itemsets are generators. Testing the support values, itemset {D} is 
opiedto RG1, while the other generators are 
opied to FG1. In CG2 there is one itemsetthat has the same support as one of its subsets, thus {BE} is not a (key) generator. Inthe fourth iteration no new 
andidate is found and the algorithm breaks out from the
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s, Vol.4, No.3, September 2010main loop. When the algorithm stops, all minimal rare generators are found ({D},{ABC}, and {ACE}).2.5 Complexity of the mRG 
omputationThe theoreti
al 
omplexity of the above algorithm is bound to the 
omplexityof the levelwise algorithms for frequent itemset mining. Thus, due to the potentiallyexponential size of the output, there is no point in establishing a 
onventional es-timation thereof in terms of the O-based notation. Indeed, in the worst 
ase therewill be exponentially many FGs, hen
e any 
omparable algorithm will have an ex-ponential 
omplexity fun
tion. Therefore, a more reasonable measure for e�
ien
ywould be provided by the 
omputational 
ost per single generator, the amount ofwork to 
ompute a single member of the entire FG/mRG family. Following [7℄, it iseasy to see that this quantity is bounded by a polynomial fun
tion of the followingfa
tors: (1) the maximal size of a mRG/FG, (2) the size of the transa
tion database,and (3) the number of items. As of the 
omplexity 
lass of the algorithm, it is ne
-essarily in the total polynomial 
lass, following the 
lassi�
ation of [9℄ for algorithmsthat list all the solutions of a de
ision problem. The stronger notion of polynomialdelay, meaning that the delay between any two outputs of the algorithm (mRG) ispolynomial in the size of the input, is also satis�ed. This is an important quality assu
h algorithms take time linear in the 
ombined size of their input and output.3 Rare Asso
iation Rules3.1 Basi
 
on
eptsAn asso
iation rule is an expression of the form P1 → P2, where P1 and P2 arearbitrary itemsets (P1, P2 ⊆ A), P1 ∩ P2 = ∅ and P2 6= ∅. The left side, P1 is 
alledante
edent, the right side, P2 is 
alled 
onsequent. The support of an asso
iation rule
r: P1 → P2 is de�ned as: supp(r) = supp(P1 ∪ P2). The 
on�den
e of an asso
iationrule r: P1 → P2 is de�ned as the 
onditional probability that an obje
t in
ludes P2,given that it in
ludes P1: conf(r) = supp(P1∪P2)/supp(P1). An asso
iation rule r is
alled 
on�dent, if its 
on�den
e is not less than a givenminimum 
on�den
e (denotedby min_conf), i.e. conf(r) > min_conf . An asso
iation rule r with conf(r) = 1.0(i.e. 100%) is an exa
t asso
iation rule, otherwise it is an approximate asso
iationrule.An asso
iation rule r is 
alled frequent if its support is not less than a givenminimum support (denoted by min_supp), i.e. supp(r) > min_supp. A frequentasso
iation rule is valid if it is 
on�dent, i.e. supp(r) > min_supp and conf(r) >

min_conf . Minimal non-redundant asso
iation rules (MNR) have the followingform: P → Q \ P , where P ⊂ Q and P is a frequent generator and Q is a frequent
losed itemset.An asso
iation rule is 
alled rare if its support is not more than a given maximumsupport. Sin
e we use a single border, it means that a rule is rare if its support is lessthan a given minimum support. A rare asso
iation rule r is valid if r is 
on�dent, i.e.
supp(r) < min_supp and conf(r) > min_conf . In the rest of the paper, by �rareasso
iation rules� we mean valid rare asso
iation rules.
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iation rules using the minimal ... 133.2 Breaking the barrierRe
all that our goal is to break the barrier, i.e. to be able to extra
t rareitemsets and rare asso
iation rules that 
annot be extra
ted with the dire
t approa
hused by 
onventional frequent itemset mining algorithms like Apriori. With the BtB(Breaking the Barrier) algorithm we 
an extra
t highly 
on�dent rare asso
iation rulesbelow the barrier. The algorithm 
onsists of the following three main steps.First, for 
omputing the set of minimal rare itemsets, the key algorithm isMRG-Exp. MRG-Exp �nds frequent generators, but as a �side e�e
t� it also exploresthe so-
alled minimal rare generators (mRGs). MRG-Exp retains these itemsets in-stead of pruning them. In Se
tion 2.2 we show that the set of minimal rare itemsetsis identi
al to the set of minimal rare generators (see Proposition 2.1).Se
ond, �nd the 
losures of the previously found minimal rare generators so asto obtain their equivalen
e 
lasses.Third, from the explored rare equivalen
e 
lasses it is possible to generate rareasso
iation rules in a way very similar to that of �nding (frequent) minimal non-redundant asso
iation rules. We 
all these rare rules �mRG rules� be
ause theirante
edents are minimal rare generators.3.3 mRG rulesTwo kinds of mRG rules 
an be distinguished, namely exa
t and approximaterules. In this paper we 
on
entrate on exa
t mRG rules that 
an be 
hara
terized as:
r: P1 ⇒ P2 \ P1 , where P1 ⊂ P2

P1 is an mRG
P1 ∪ (P2 \P1) = P2 is a rare 
losed itemset
conf(r) = 1.0From the form of exa
t mRG rules it follows that these rules are rare asso
iationrules, where the ante
edent (P1) is rare and the 
onsequent (P2\P1) is rare or frequent.

P1 and P2 are in the same equivalen
e 
lass.Sin
e a generator is a minimal subset of its 
losure with the same support, theserules allow us to dedu
e maximum information with minimal hypothesis, just as the
MNR rules. Using Kryszkiewi
z's 
over operator [12℄, one 
an restore further exa
trare asso
iation rules from the set of exa
t mRG rules.Example. Figure 3 shows all the equivalen
e 
lasses of dataset D. Supportvalues are depi
ted above to the right of equivalen
e 
lasses. Itemsets with the samesupport are grouped together in the same level. Levels are separated by bordersthat are de�ned by di�erent min_supp values. Next to ea
h min_supp value, the
orresponding minimal rare itemsets are also shown. For instan
e, if min_supp = 4then there exist 5 frequent itemsets (A, C, B, E, BE) and 6 minimal rare itemsets(D, AB, AC, AE, BC, CE).Suppose that the barrier is at min_supp = 4. In this 
ase, using Apriori, theless frequent asso
iation rules have support 4. With Apriori-Rare or MRG-Exp, thefollowing mRIs are found: D, AB, AC, AE, BC and CE. Cal
ulating their 
losures,four rare equivalen
e 
lasses are explored, as shown in Figure 4 (left). Note that notall rare equivalen
e 
lasses are found. For instan
e, the 
lass whose maximal element
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s, Vol.4, No.3, September 2010is ABCE is not found be
ause its generators are not mRIs, i.e. it is not true for ABCand ACE that all their proper subsets are frequent itemsets.
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Figure 3. Rare equivalen
e 
lasses found by BtB in dataset D at di�erent min_supp values.Generating exa
t mRG rules. On
e rare equivalen
e 
lasses are found, therule generation method is basi
ally the same as in the 
ase of MNR rules. Exa
tmRG rules are extra
ted within the same equivalen
e 
lass. Su
h rules 
an only beextra
ted from non-singleton 
lasses. Figure 4 (
enter) shows whi
h exa
t mRG rules
an be extra
ted from the found rare equivalen
e 
lasses (Figure 4, left).Generating approximate mRG rules. Approximate mRG rules are ex-tra
ted from 
lasses whose maximal elements are 
omparable with respe
t to setin
lusion. Let P1 be an mRG, γ(P1) the 
losure of P1, and [P1] the equivalen
e 
lassof P1. If a proper superset P2 of γ(P1) is pi
ked among the maximal elements of thefound rare equivalen
e 
lasses di�erent from [P1], then P1 → P2\P1 is an approximatemRG rule. Figure 4 (right) shows the approximate mRG rules that 
an be extra
tedfrom the found rare equivalen
e 
lasses (Figure 4, left).4 Experimental ResultsIn this se
tion we present the results of a series of tests. First, we 
omparethe performan
es of Apriori-Rare and MRG-Exp. Then, we provide results that weobtained on a real-life biomedi
al dataset. Finally, we demonstrate that our approa
h
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losure supp. generators
ABDE 1 D

AC 3 AC

ABE 3 AB, AE
BCE 3 BC, CE

rule supp. 
onf.
D ⇒ ABE 1 1.0
AB ⇒ E 3 1.0
AE ⇒ B 3 1.0
BC ⇒ E 3 1.0
CE ⇒ B 3 1.0

rule supp. 
onf.
AB → DE 1 1/3

AE → BD 1 1/3Figure 4. Left: rare equivalen
e 
lasses found by BtB in D with min_supp = 4. Center: exa
tmRG rules in D with min_supp = 4. Right: approximate mRG rules in D with min_supp = 4.is 
omputationally e�
ient for extra
ting rare itemsets and rare asso
iation rules.Thus, a series of 
omputational times resulting from the appli
ation of our algorithmsto well-known datasets is presented.The algorithms were implemented in Java in the Coron platform [25℄.3 Theexperiments were 
arried out on an Intel Pentium IV 2.4 GHz ma
hine running underDebian GNU/Linux operating system with 512 MB RAM. All times reported are real,wall 
lo
k times as obtained from the Unix time 
ommand between input and output.For the experiments we have used the following datasets: T20I6D100K, C20D10K,C73D10K, and Mushrooms. Database 
hara
teristi
s are shown in Table 1. TheT20I6D100K4 is a sparse dataset, 
onstru
ted a

ording to the properties of marketbasket data that are typi
al weakly 
orrelated data. The C20D10K and C73D10Kare 
ensus datasets from the PUMS sample �le, while the Mushrooms5 des
ribesmushrooms 
hara
teristi
s. The last three are dense, highly 
orrelated datasets.Table 1. Database 
hara
teristi
sdatabase # re
ords # non-empty # attributes largestname attributes (in average) attributeT20I6D100K 100,000 893 20 1,000C20D10K 10,000 192 20 385C73D10K 10,000 1,592 73 2,177Mushrooms 8,416 119 23 1284.1 Apriori-Rare vs. MRG-ExpIn our experiments we 
ompared Apriori-Rare and MRG-Exp. The exe
utiontimes of the two algorithms are illustrated in Table 2. The table also shows thenumber of frequent itemsets, the number of frequent generators, the proportion ofthe number of FGs to the number of FIs, and the number of minimal rare itemsets.The T20I6D100K syntheti
 dataset mimi
s market basket data that are typi
alsparse, weakly 
orrelated data. In this dataset, the number of FIs is small and nearlyall FIs are generators. Thus, MRG-Exp works exa
tly like Apriori-Rare , i.e. it has toexplore almost the same sear
h spa
e. The reason whyMRG-Exp is a bit slower is thatMRG-Exp determines in addition the pred_supp value of ea
h 
andidate generator.In datasets C20D10K, C73D10K, and Mushrooms, the number of FGs is mu
hless than the total number of FIs. Hen
e, MRG-Exp 
an take advantage of explor-
3 http://
oron.loria.fr
4 http://www.almaden.ibm.
om/software/quest/Resour
es/
5 http://kdd.i
s.u
i.edu/
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s, Vol.4, No.3, September 2010ing a mu
h less sear
h spa
e than Apriori-Rare. Thus, MRG-Exp performs mu
hbetter on dense, highly 
orrelated data. For example, on the dataset Mushroomsat min_supp = 10%, Apriori-Rare needs to extra
t 600,817 FIs, while MRG-Expextra
ts 7,585 FGs only. This means that MRG-Exp redu
es the sear
h spa
e ofApriori-Rare to 1.26%!Table 2. Response times of Apriori-Rare and MRG-Expmin_supp exe
ution time (se
.) # FIs # FGs #FGs

#FIs
# mRIsApriori-Rare MRG-ExpT20I6D100K10% 11.47 15.91 7 7 100.00% 9070.75% 146.61 156.65 4,710 4,710 100.00% 211,5780.5% 238.27 262.32 26,836 26,305 98.02% 268,9150.25% 586.21 622.30 155,163 149,447 96.32% 537,765C20D10K30% 125.97 26.55 5,319 967 18.18% 23020% 326.87 50.31 20,239 2,671 13.20% 40010% 842.85 104.25 89,883 9,331 10.38% 9015% 1,785.08 162.07 352,611 23,051 6.54% 2,0022% 4,074.33 228.44 1,741,883 57,659 3.31% 7,735C73D10K95% 216.04 37.04 1,007 121 12.02% 1,62290% 2,567.42 253.08 13,463 1,368 10.16% 1,70185% 9,364.20 607.85 46,575 3,513 7.54% 1,652Mushrooms40% 13.73 6.00 505 153 30.30% 25430% 46.10 12.64 2,587 544 21.03% 40915% 869.27 40.68 99,079 3,084 3.11% 1,84610% 3,097.16 69.23 600,817 7,585 1.26% 3,0774.2 The Stanislas 
ohortA 
ohort study 
onsists of examining a given population during a period of timeand of re
ording di�erent data 
on
erning this population. Data from a 
ohort show ahigh rate of 
omplexity: they vary in time, involve a large number of individuals andparameters, show many di�erent types, e.g. quantitative, qualitative, textual, binary,et
., and they may be noisy or in
omplete. whose main obje
tive is to investigate theimpa
t of geneti
 and environmental fa
tors on variability of 
ardiovas
ular risk fa
-tors [17℄. The 
ohort 
onsists of 1006 presumably healthy families (4295 individuals)satisfying some 
riteria: Fren
h origin, two parents, at least two biologi
al 
hildrenaged of 4 or more, with members free from serious and/or 
hroni
 illnesses. The
olle
ted data are of four types: (1) Clini
al data (e.g. size, weight, blood pressure);(2) Environmental data (life habits, physi
al a
tivity, drug intake); (3) Biologi
al data(glu
ose, 
holesterol, blood 
ount); (4) Geneti
 data (geneti
 polymorphisms).The experts involved in the study of the Stanislas 
ohort are spe
ialists of the
ardiovas
ular domain and they are interested in �nding asso
iations relating one ormore geneti
 features (polymorphisms) to biologi
al 
ardiovas
ular risk fa
tors. Theobje
tive of the present experiment is to dis
over rare asso
iation rules linking biolog-
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al risk fa
tors and geneti
 polymorphisms. As a geneti
 polymorphism is de�ned asa variation in the DNA sequen
e o

urring in at least one per
ent of the population,it is easily understandable that the frequen
y of the di�erent geneti
 variants is rela-tively low in the Stanislas 
ohort, given that it is based on a healthy population.Therefore, this fully justi�es an analysis based on rare asso
iation rules [25℄.Here is an example of the extra
tion of a new biologi
al hypothesis derived fromthe study of the Stanislas 
ohort. The obje
tive of the experiment is to 
hara
-terize the geneti
 pro�le of individuals presenting �metaboli
 syndrome� (dependingon 
riteria su
h as waist 
ir
umferen
e, trigly
eride levels, HDL 
holesterol 
on
en-tration, blood pressure, and fasting glu
ose value). A horizontal proje
tion allowedus to retain nine individuals with metaboli
 syndrome. Then, a verti
al proje
tionwas applied on a set of 
hosen attributes. Rare asso
iation rules were 
omputed andthe set of extra
ted rules was mined for sele
ting rules with the attribute metaboli
syndrome in the left or in the right hand side. In this way, an interesting extra
tedrule has been dis
overed: MS ⇒ APOB_71ThrIle (support 9 and 
on�den
e 100%).This rule 
an be interpreted as �an individual presenting the metaboli
 syndrome isheterozygous for the APOB 71Thr/Ile polymorphism�. This rule has been veri�edand validated using statisti
al tests, allowing us to 
on
lude that the repartition ofgenotypes of the APOB71 polymorphism is signi�
antly di�erent when an individualpresents metaboli
 syndrome or not, and suggests a new biologi
al hypothesis: a sub-je
t possessing the rare allele for the APOB 71Thr/Ile polymorphism presents morefrequently the metaboli
 syndrome. Other examples of rare rules 
an be found in [25℄.4.3 Further experimentsWe evaluated BtB on the four datasets mentioned before. Table 3 shows thedi�erent steps of �nding exa
t mRG rules. The table 
ontains the following 
olumns:(1) Name of the dataset and minimum support values; (2) Number of frequent item-sets. It is only indi
ated to show the 
ombinatorial explosion of FIs as min_suppis lowered; (3) Number of mRGs whose support ex
eeds 0. Sin
e the total numberof zero itemsets 
an be huge, we have de
ided to prune itemsets with support 0;(4) Number of non-singleton rare equivalen
e 
lasses that are found by using non-zero mRGs; (5) Number of found exa
t (non-zero) mRG rules; (6) Total runtime ofthe BtB algorithm, in
luding input/output.During the experiments we used two limits: a spa
e limit, whi
h was determinedby the main memory of our test ma
hine, and a time limit that we �xed as 10,000se
onds. The value of the barrier is printed in bold in Table 3. For instan
e, in thedatabase C73D10K using Apriori we were unable to extra
t any asso
iation ruleswith support lower than 65% be
ause of hitting the time limit. However, 
hanging toBtB at this min_supp value, we managed to extra
t 3,675 exa
t mRG rules whosesupports are below 65%. This result shows that our method is 
apable to �nd rarerules where frequent itemset mining algorithms fail.
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s, Vol.4, No.3, September 2010Table 3. Steps taken to �nd the exa
t mRG asso
iation rulesdataset # FIs # mRGs # rare eq. # mRG runtime ofand (non-zero) 
lasses rules the BtB alg.min_supp (non-zero, (exa
t) (se
.)non-singleton)
D, 80% 5 6 3 5 0.09T20I6D100K, 10% 7 907 27 27 25.360.75% 4,710 211,561 4,049 4,053 312.630.5% 26,836 268,589 16,100 16,243 742.400.25% 155,163 534,088 43,458 45,991 2,808.54C20D10K, 10% 89,883 837 778 837 102.091% 6,194,967 15,433 12,485 15,433 302.970.5% 15,602,883 33,266 25,165 33,266 401.410.25% 40,450,371 62,173 41,915 62,173 640.95C73D10K, 95% 1,007 1,622 1,570 1,622 59.1075% 235,271 1,939 1,794 1,939 2,183.7070% 572,087 2,727 2,365 2,727 4,378.0265% 1,544,691 3,675 2,953 3,675 9,923.94Mushrooms, 50% 163 147 139 147 3.3810% 600,817 2,916 2,324 2,916 74.605% 4,137,547 7,963 5,430 7,963 137.861% 92,894,869 37,034 16,799 37,034 321.785 Con
lusionFrequent asso
iation rule mining has been studied extensively in the past. Themodel used in all these studies, however, has always been the same, i.e. �nding allrules that satisfy user-spe
i�ed min_supp and min_conf 
onstraints. However, inmany 
ases, most rules with high support are obvious and/or well-known, and it isthe rules of low support that provide interesting new insights.In the �rst part of the paper, we presented an approa
h for rare itemset miningfrom a dataset. The traversal of the frequent zone in the spa
e is addressed by twodi�erent algorithms, a naïve one, Apriori-Rare , whi
h relies on Apriori and hen
eenumerates all frequent itemsets; and an optimized one, MRG-Exp, whi
h limits the
onsiderations to frequent generators only. Experimental results prove the interest ofthe optimized method on dense, highly 
orrelated datasets.In the se
ond part of the paper, we presented a novel method to extra
t interest-ing rare asso
iation rules that remain hidden for 
onventional frequent itemset miningalgorithms. To the best of our knowledge, this is the �rst method in the literaturethat 
an �nd strong but rare asso
iations, i.e., lo
al regularities in the data. Theserules, 
alled �mRG rules�, have two merits. First, they are maximally informative inthe sense that they have an ante
edent whi
h is a generator itemset whereas addingthe 
onsequent to it yields a 
losed itemset. Se
ond, the number of these rules is min-imal, i.e. the mRG rules 
onstitute a 
ompa
t representation of all highly 
on�dentasso
iations that 
an be drawn from the minimal rare itemsets.
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