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Abstract Rare association rules correspond to rare, or infrequent, itemsets, as opposed
to frequent ones that are targeted by conventional pattern miners. Rare rules reflect reg-
ularities of local, rather than global, scope that can nevertheless provide valuable insights
to an expert, especially in areas such as genetics and medical diagnosis where some specific
deviations/illnesses occur only in a small number of cases. The work presented here is mo-
tivated by the long-standing open question of efficiently mining strong rare rules, i.e., rules
with high confidence and low support. We also propose an efficient solution for finding the
set of minimal rare itemsets. This set serves as a basis for generating rare association rules.
Key words: data mining; knowledge discovery in databases (KDD); itemset extraction;
rare itemsets; rare association rules; rare item problem
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1 Introduction

Conventional pattern miners target the frequent itemsets and rules in a dataset.
These are believed to reflect the globally valid trends and regularities dug in the
data, hence they typically support modelling and/or prediction. Yet in many cases
global trends are known or predictable beforehand by domain experts, therefore such
patterns do not bear much value to them. In contrast, regularities of local scope, i.e.,
covering only a small number of data records, or transactions, may be of higher interest
as they could translate less well-known phenomena, e.g., contradictions to the general
beliefs in the domain or notable exceptions thereof [16]. This is often true in areas such
as genetics and medical diagnosis where many deviations / symptom combinations will
only manifest in a small number of patient cases. Hence the potential of the methods
for mining the corresponding patterns and rules for supporting a more focused analysis
of the recorded biomedical data. The present paper is a revised and extended version
of [23] and [24].

1.1 Motivating examples

A first case study for atypical patterns and rules pertains to a French biomedical
database, the STANISLAS cohort [17]. The STANISLAS cohort comprises the medical

Corresponding author: Laszlo Szathmary; e-mail: Szathmary.L@Qgmail.com
Received 2010-08-18; revised 2010-10-01; accepted 2010-10-14



2 International Journal of Software and Informatics, Vol.4, No.3, September 2010

records of a thousand presumably healthy French families. In a particular problem
settings, the medical experts are interested in characteristics and relations that per-
tain to a very small number of individuals. For instance, a key goal in this context
is to investigate the impact of genetic and environmental factors on diversity in car-
diovascular risk factors. Interesting information to extract from the cohort database
includes the patient profiles associating genetic data with extreme or borderline val-
ues of biological parameters. However, such types of associations should be atypical
in healthy cohorts.

To illustrate the concept of rare rules and its potential benefits, assume we want
to target the causes for a group of cardiovascular diseases (CVD) within the STANTS-
LAS cohort. If a frequent combination of CVD and a potential factor is found, then
the factor may be reasonably qualified as a facilitator for the disease. For instance,
a frequent itemset “{elevated cholesterol level, CVD}” and a strong association rule
“{elevated cholesterol level} = {CVD}” would empirically validate the widely acknowl-
edged hypothesis that people with high cholesterol level are at serious risk of develop-
ing a CVD. In contrast, if the itemset involving a factor and CVD is rare, this would
suggest an inhibiting effect on the disease. For instance, the rareness of the itemset
“{vegetarian, CVD}” would suggest that a good way to reduce the CVD risk is to
observe a vegetarian diet.

The second case study pertains to pharmacovigilance, a domain of pharmacol-
ogy dedicated to the detection, monitoring and study of adverse drug effects. Given
a database of clinical records together with taken drugs and adverse effects, mining
relevant itemsets would enable a formal association between drugs adverse effects.
Thus, the detected patterns of (combinations of) drugs with undesired (or even fatal)
effects on patients could provide the basis for an informed decision as to the with-
drawal or continuance of a given drug. Such decision may affect specific patients,
part of or even in the entire drug market (see, for instance, the withdrawal of the
lipid-lowering drug Cerivastatin in August 2001). Yet in order to make appear the
alarming patterns of adverse effects, the benign ones, which compose the bulk of the
database content, should be filtered out first. Once again, there is a need to skip
the typical phenomena and to focus on less expectable ones. It is noteworthy that
similar reasoning may be abstracted from unrelated problem domains such as bank
fraud detection where fraudulent behaviour patterns manifest in only a tiny portion
of the transaction database content.

1.2 State of the art

Pattern mining based on the support metrics is biased upon the detection of
trends that are — up to a tolerance threshold — globally valid. Hence a straightforward
approach to the detection of atypical and local regularities has been to relax the crisp
and uniform minimal support criterion for patterns [26].

In a naive problem settings, the minimal support could be decreased sufficiently
to include in the frequent part of the pattern family all potentially interesting regu-
larities. Yet this would have a devastating impact on the performances of the pattern
miner on top of the additional difficulties in spotting the really interesting patterns
within the resulting huge output (known as the rare item problem [15, 29]).
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A less uniform support criterion is designed in [29] where the proposed method
RSAA (Relative Support Apriori Algorithm) relies on item-wise minimal support
thresholds with user-provided values. RSAA outputs all itemsets, and hence rules,
having their support above at least one support threshold corresponding to a member
item. Thus, the output still comprises all frequent itemsets and rules together with
some, but not necessarily all, atypical ones.

A higher degree of automation is achieved in MSapriori (Multiple Supports Apri-
ori) [15] by modulating the support of an itemset with the supports of its member
items. Thus, the support is increased by a factor inversely proportional to the lowest
member support, which, on the bottom line increases the chances of itemsets involv-
ing infrequent items to nevertheless make it to the frequent part of the pattern family.
Once more, the overall effect is the extension of the frequent part in the pattern family
by some infrequent itemsets.

In [28], Wu et al. proposes an extension of the traditional association rule mining
framework to include rules of forms A = —-B, -A = B, and -A = —B, which indicate
negative associations between itemsets. Negative association rules are obtained using
infrequent itemsets. In contrast to positive association rules, negative association rules
provide information about the absence of certain itemsets. FEmerging patterns are
itemsets whose support increases significantly from one dataset to another. Emerging
patterns are said to capture emerging trends in time-stamped databases, or to capture
differentiating characteristics between classes of data. Emerging patterns can have
low support in dataset D; and high support in Dy, thus they can yield some important
changes between the two datasets. See [19] for a survey on emerging patterns. In [20],
the authors are interested in the extraction of concepts with smaller support in a given
lattice. This work is carried out in the framework of Formal Concept Analysis [8] and
is related to our work. However, our search for rare itemsets and rare association rules
(with high confidence) is directly performed on data rather than exploring concepts
within a concept lattice.

Our own approach is a more radical departure from the standard pattern mining
settings as it focuses directly on the infrequent part of the pattern family that becomes
the mining target. The underlying key notion is the rare itemset (rule) defined as
an itemset (rule) with support lower than the threshold. Apriori-Inverse[10], and
MIISR (Mining Interesting Imperfectly Sporadic Rules) [11] are two methods from
the literature that exploit the same rarity notion, yet the former would exclusively
mine perfectly rare itemsets (i.e., having exclusively rare subsets) while the latter
slightly relaxes this overtly crisp constraint. This, on the bottom line, amounts to
exploring rare patterns within the order filter above the rare singleton itemsets (i.e.,
rare items) in the itemset lattice while ignoring rare itemsets mixing both rare and
frequent items.

Here we propose a framework that is specifically dedicated to (i) the extraction
of rare itemsets and (ii) the generation of rare association rules. It is based on an
intuitive yet formal definition of rare itemset and rare association rule. Our goal
is to provide a theoretical foundation for rare pattern mining and rare association
rule generation, with definitions of reduced representations and complexity results
for mining tasks, as well as to develop an algorithmic tool suite (within the CORON
project [25]) together with the guidelines for its use.
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It is noteworthy that playing with minimal support is not the only way to ap-
proach the mining of atypical regularities. Thus, different statistical measures may be
used to assess atypicality of patterns that are not bound to the number of occurrences.
Moreover, the availability of an explicitly expressed body of expert knowledge or ex-
pectations/beliefs (e.g., as general rules) for a particular dataset or analysis problem
enables a more focused pattern extraction where an unexpected or exceptional pat-
tern is assessed with respect to a generally admitted one (a relevant discussion thereof
may be found in [27]).

Rare itemsets, similarly to frequent ones, could be easily turned into rules, i.e. by
splitting them into premise and conclusion subsets. The resulting rules are necessarily
rare but their confidence would vary. Only rules of high confidence can be reasonably
considered as regularities.

The extraction of rare itemsets and rules presents significant, challenges for data
mining algorithms [26]. In particular, algorithms designed for frequent itemset mining
are inadequate for extracting rare association rules. Therefore, as it was argued in
[25], new specific algorithms have to be designed. The problem with conventional
frequent itemset mining approaches is that they have a (physical) limit on how low
the minimum support can be set. We call this absolute limit the barrier: the barrier
is the absolute minimum support value that is still manageable for a given frequent
itemset mining algorithm in a given computing environment. The exact position
(value) of the barrier depends on several variables, such as: (1) the database (size,
density, highly- or weakly-correlated, etc.); (2) the platform (characteristics of the
machine that is used for the calculation (CPU, RAM)); (3) the software (efficient / less
efficient implementation), etc. Conventional search techniques are always dependent
on a physical limit that cannot be crossed: it is almost certain that the minimum
support cannot be lowered to 1.1 The questions that arise are: how can the barrier be
crossed; what is on the other side of the barrier; what kind of information is hidden;
and mainly, how to extract interesting association rules from the negative side of the
barrier.

1.3  Contribution

In order to generate rare association rules, first rare itemsets have to be ex-
tracted. In [18] it is stated that the negative border of frequent itemsets can be found
with levelwise algorithms. In the next section, first we propose a straightforward
modification of the Apriori algorithm for this task called Apriori-Rare. During the
levelwise search, Apriori computes the support of minimal rare itemsets (mRlIs), i.e.
rare itemsets such that all proper subsets are frequent. Instead of pruning the mRIs,
Apriori-Rare retains them. After Apriori-Rare we introduce an optimized method
called MRG-FEzxp that limits the exploration to frequent generators only. Generators
are itemsets that have no proper subsets with the same support. Experimental re-
sults reveal that MRG-Ezp is more efficient on dense, highly correlated datasets. In
addition, we show that the output of the two algorithms are identical.

In the second part of the paper, we focus on the search for valid rare association
rules, i.e. rules with low support and high confidence. Once all rare itemsets are
available, in theory it is possible to generate all valid rare association rules. However,

1 When the absolute value of minimum support is 1, then all existing itemsets are frequent.
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this method has two drawbacks. First, the restoration of all rare itemsets is a very
memory-expensive operation due to the huge number of rare itemsets. Second, having
restored all rare itemsets, the number of generated rules would be even more. Thus,
the same problem as in the case of frequent valid association rules has to be faced:
dealing with a huge number of rules of which many are redundant and not interesting
at all.

Frequent itemsets have several condensed representations, e.g. closed itemsets
[21], generators representation [13], free-sets [1], non-derivable itemsets [5], etc. How-
ever, from the application point of view, the most useful representations are closed
itemsets and generators. Among frequent association rules, bases are special rule
subsets from which all other frequent association rules can be restored with a proper
inference mechanism. The set of minimal non-redundant association rules (MANR)
is particularly interesting, because it is a lossless, sound, and informative representa-
tion of all valid (frequent) association rules [14]. Moreover, these frequent rules allow
one to deduce a maximum of information with minimal hypotheses. Accordingly, the
same sort of subset has been searched for rare rules, namely the set of minimal rare
itemset rules, presented hereafter.

The present work is motivated by the long-standing open question of devising
an efficient algorithm for finding rules that have a high confidence together with a
low support. This work shows a number of characteristics that are of importance.
First, valid rare association rules can be extracted efficiently. Second, an interesting
subset of rare association rules can be directly computed, similar to the set of (fre-
quent) MNR rules in the case of frequent rules. Third, the method is rather easy to
implement.

The paper is organized as follows. The basic concepts and definitions for frequent
and rare itemsets together with the computationally motivated results are presented in
Section 2. Our two methods for computing the minimal rare itemsets are included in
the same section. Then, Section 3 details the generation of informative rare association
rules from rare itemsets. A detailed experimental study of the algorithms is provided
in Section 4. Finally, Section 5 concludes the paper.

2 Frequent and Rare Itemsets

Consider the following 5 x 5 sample dataset: D = {(1, ABDE), (2, AC),
(3, ABCE), (4, BCE), (5, ABCE)}. Throughout the paper, we will refer to this
example as “dataset D”.

2.1 Basic concepts

We consider a set of objects or transactions O = {01,09,...,0m}, a set of at-
tributes or items A = {a1,az,...,a,}, and a relation R C O x A. A set of items is
called an itemset. Each transaction has a unique identifier (tid), and a set of trans-
actions is called a tidset. The tidset of all transactions sharing a given itemset X
is its image, denoted ¢(X). For instance, the image of {4, B} in D is {1,3,5}, i.e,,
t(AB) = 135 in our separator-free set notation. The length of an itemset X is |X]|,
whereas an itemset of length 7 is called an i-itemset. The (absolute) support of an
itemset X, denoted by supp(X), is the size of its image, i.e. supp(X) = [t(X)].
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Support is a prime measure of interest for itemsets: one is typically — but not
exclusively — interested in regularities in the data that manifest in recurring patterns.
Thus, intuitively, the itemsets of higher support are more attractive. Formally, the
frequent itemset mining assumes a search space for interesting patterns that corre-
spond to the Boolean lattice B(2) of all possible itemsets (see Figure 1). The lattice
is separated into two segments or zones through a user-provided “minimum support”
threshold, denoted by min_ supp. Thus, given an itemset X, if supp(X) > min_ supp,
then it is called frequent. Dually, if a maximal support threshold maz _supp is pro-
vided then an itemset P such that supp(P) < max_supp is called rare (or infrequent).

Frequent itemsets (FIs) and rare itemsets belong to two mutually complementary
subsets of the powerset, 2 that further represent contiguous zones of the lattice B(24).
In the technical language of lattice theory [6], these zones represent an order ideal (or
downset) and an order filter (or upset), respectively, which means that a subset of
a frequent itemset is necessarily frequent and, dually, a superset of a rare itemset is
necessarily rare. In the lattice in Figure 1, the two zones corresponding to a support
threshold of 3 are separated by a solid line. For example, the itemsets {A}, {AB}, or
{BE} are frequent whereas {D}, {BD}, or {ACD} are rare.

The rare itemset family and the corresponding lattice zone is the target structure
of our study. It may be further split into two parts, the itemsets of support zero,
hereafter called zero itemsets? (X with supp(X) = 0), on the one hand, and all other
rare itemsets, on the other hand. For instance, {BCD} is a zero itemset whereas {D}
is a non-zero rare itemset.

It is noteworthy that the overall split of the lattice into three “stripes” depends for
its exact shape on the chosen value for min_ supp. Furthermore, it can be generalized
to n stripes by providing an ordered sequence of n — 1 values. Typically, we have
assumed above that all itemsets can either be rare or frequent, but this needs not to
always be the case. Thus, one can have two separate threshold values, one for each
family, thus leaving a possibly void intermediate zone of neither-frequent-nor-rare
itemsets.

Whatever the exact number of thresholds and zones, each zone is delimited by
two subsets, the maximal elements and the minimal ones, respectively. For instance,
the minimal frequent itemset is the empty set (whose support is |D|) whereas the
family of maximal frequent itemsets depends on min_ supp. Similarly, the unique
maximal rare itemset is Z which is usually, but not invariably, a zero itemset.

The above intuitive ideas are formalized in the notion of a border introduced by
Mannila and Toivonen in [18]. According to their definition, the maximal frequent
itemsets constitute the positive border of the frequent zone whereas the minimal rare
itemsets form the negative border of the same zone. Obviously, the same holds for
the border between non-zero and zero itemsets as well.

Equivalence Class. An equivalence relation is induced by ¢ on the power-set
of items p(A): equivalent itemsets share the same image (X = Z iff ¢(X) = ¢(2))
[4]. Consider the equivalence class of X, denoted [X], and its extremal elements
w.r.t. set inclusion. [X] has a unique maximum (a closed itemset), and a set of
minima (generator itemsets). A singleton equivalence class has only one element.
The following definition exploits the monotony of support upon set inclusion in p(A):

2 Not to be confused with the empty set.
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Definition 2.1. An itemset X is closed if it has no proper superset with the
same support. An itemset Z is generator if it has no proper subset with the same
support.

A closure operator underlies the set of closed itemsets; it assigns to X the max-
imum of [X] (denoted by 7(X)). Naturally, X = ~(X) for closed X. Generators,
a.k.a. key-sets in database theory, represent a special case of free-sets [1]. The follow-
ing property, which is widely known in the domain, basically states that the generator
family is a downset within the Boolean lattice (p(.A), C):

Property 2.1. Given X C A, if X is a generator, then VY C X, Y is a
generator, whereas if X is not a generator, VZ O X, Z is not a generator.

. O rare itemset
/ border of frequent itemsets

() rare itemset with support 0

- © minimal rare itemset (mRI)
- border of frequent generators

minimal zero generator (MZG)

frequent itemset

maximal frequent itemset (MFI)

min_supp = 3
i

Figure 1. The powerset lattice of dataset D.

2.2 Computationally motivated results

In order to ground an effective and efficient computation procedure for a partic-
ular zone, e.g., the frequent itemset family, one must provide a characterization of its
members. Moreover, if the computation is done levelwise, i.e., by visiting iteratively
lattice levels that are made of itemsets of a fixed size, one may also need a charac-
terization of the zone border(s). Indeed, if the zone comprises none of the lattice
extremal nodes, i.e., § and A, as is the case of the rare itemset zone, one needs to
first pinpoint the starting points of the zone exploration. These starting points are
typically the extremal elements, either maximal or minimal, i.e., the positive borders.
Furthermore, the computation would typically need to traverse a neighbor zone, hence
the negative border of the target zone must also be computed.

We consider here a computation of the rare itemsets that approaches them start-
ing from the lattice bottom, i.e., from the frequent zone. Hence we need a characteri-
zation of what is widely known as the positive and the negative border of the frequent
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itemsets, and corresponds for us to the negative lower border and the positive lower
border of the rare itemsets, respectively. Moreover, should one need more than simply
the rare itemsets on the border, the adverse upper border must be characterized as
well.

First, the negative lower border of rare itemsets is a structure known from the
literature. The characterization of its members, the mazimal frequent itemsets, is
straightforward:

Definition 2.2.  An itemset is a mazimal frequent itemset (MFT) if it is frequent
but all its proper supersets are rare.

Second, the positive lower border of rare itemsets, i.e. the set of minimal rare
itemsets is defined dually:

Definition 2.3. An itemset is a minimal rare itemset (mRI) if it is rare but
all its proper subsets are frequent.

There are at least two possibilities for reaching the mRI family from the lattice
bottom node that we discuss in the next subsections. On the one hand, as we indicated
above, a levelwise search listing all frequent itemsets up to the MFIs represents a
straightforward solution. Indeed, the levelwise search yields as a by-product all mRIs
[18]. On the other hand, the computation of MFIs has been tackled by dedicated
methods, hence an alternative solution will be to extract these itemsets directly and
then use them as starting point in the computation of the mRIs, e.g., using the
algorithm in [3]. The latter task is known to be computationally hard as it amounts
to computing the minimal transversals of a hypergraph [2].

Hence we prefer a different optimization strategy that still yields mRIs while
traversing only a subset of the frequent zone of the Boolean lattice. It exploits the
minimal generator status of the mRIs. In Figure 1, the downset of frequent generators
is delimited by a dashed line. For instance, knowing that {BC} is a frequent generator,
{B} and {C} are necessarily frequent generators too. By Property 2.1, frequent
generators (FGs) can be traversed in a levelwise manner while yielding their negative
border as a by-product. Now, it is easy to see that all mRIs are part of the negative
border of frequent generators. To that end, it is enough to observe that mRIs are in
fact generators:

Proposition 2.1. All minimal rare itemsets are generators.

Thus, while there might well be other elements in the negative border that are not
generators, e.g., frequent itemsets other than generators, all mRIs will necessarily lay
on this border. More specifically, all the rare itemsets on that border will necessarily
be minimal for their zone.

It remains now to provide an efficient criterion for recognizing frequent genera-
tors. The following property is a reduction of the initial definition to the immediate
predecessors of a generator in the lattice (see [24]):

Proposition 2.2.  Anitemset X is a generator iff supp(X) # min;ex (supp(X\
{i})-

The property says that in order to decide whether a candidate set X is a gener-
ator, one needs to compare its support to the support of its immediate predecessors
in the lattice, i.e., the subsets of size |X| — 1. Obviously, generators do not admit
predecessors of the same support.
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The equivalence of the above results can be established for the upper border of
the rare non-zero zone of the lattice. Thus, minimal zero generators can be defined
as:

Definition 2.4. A minimal zero generator (mZG) is a zero itemset whose
proper subsets are all non-zero itemsets.

For instance, in Figure 1 there is only one mZG element, {CD}. Finally, it is
noteworthy that both sides of the border between frequent and rare itemsets play dual
role in their respective zones. Indeed, beside being extremal elements, i.e., maximal
and minimal, respectively, they constitute reduced representations for these zones as
well. For instance, to extract the entire family of frequent itemsets from the MFIs,
one only needs to generate all possible subsets thereof. Conversely, if all rare itemsets,
i.e., zero and non-zero ones, are necessary, a dual technique will work that amounts
to generating all supersets of mRIs [22]. Should zero itemsets be unnecessary, then
minimal zero generators would work as stop criterion: only supersets of mRIs that
do not include a minimal zero generator will be kept. Provided the support of these
sets is required, it can be easily computed along a single pass through the database.

The next two subsections present the two methods for mRI computation.

2.3 Finding mRIs with a naive approach

As pointed out by Mannila and Toivonen in [18], the easiest way to reach the
negative border of the frequent itemset zone, i.e., the mRIs, is to use a levelwise
algorithm such as Indeed, albeit a frequent itemset miner, Apriori yields the mRIs as
a by-product. The mRIs are milestones in the exploration as they indicate that the
border of the frequent zone has been crossed.

The overall principle of Apriori is rather intuitive: frequent itemsets are gener-
ated levelwise, at each iteration 4 targeting the itemset of length i, i.e., the i*" level
above the lattice bottom node. The algorithm generates a set of candidates that are
further matched against the database to evaluate their support in one database pass
per iteration. To avoid redundant checks, two techniques are used: (i) candidates
at level i + 1 are generated by joining frequent i-itemsets that share i — 1 of their
items, thus increasing the chance of the result being frequent, and (ii) candidates
are pruned a priori, i.e., before support computing, by eliminating those having a
rare subset (of size ¢ — 1). In doing that, there is no need to explicitly represent rare
itemsets: rather, all ¢ — 1 subsets of a candidate are generated dynamically and their
presence in the frequent itemset storage structure is tested (absence means the subset,
hence the candidate too, is rare).

Apriori-Rare is a slightly modified version of Apriori that stores the mRIs. Thus,
whenever an ¢ candidate survives the frequent ¢ — 1 subset test, but proves to be rare,
it is kept as an mRI. For example, following the execution of Apriori on dataset D,
we get the following result. In C; (the set of 1-long candidates), there are 5 itemsets
({A}, {B}, {C}, {D}, and {E}) of which {D} is rare. In C; all itemsets are frequent
({AB}, {AC}, {AE}, {BC}, {BE}, and {CE}). In C3 ({ABC}, {ABE}, {ACE}, and
{BCE}) there are two rare itemsets namely {ABC} and {ACE}. Saving the three
rare itemsets, one can obtain the following minimal rare itemsets at the end: {D},

{ABC}, and {ACE}.
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Algorithm MRG-Exp:

Description: finding minimal rare generators efficiently

Input: dataset plus min__supp

Output: FGs plus mRGs

1) CGp + {l-itemsets};

2)  SupportCount(CG1); //requires one database pass

3) loop over the rows of CG; (c) {

4) c.pred_supp < O.supp; //i.e., c.pred_supp < |O|;

5) if (c.pred_supp = c.supp) c.key <« false;

6) else c.key <« true;

7o}

8) RG:i <+ {reCGi| (rkey=true) A (r.supp < min_supp) };
9) FGi1+«+ {fe€CG1| (fkey=true) A (f.supp = min_supp) };
10) for (i < 1; true; i < i+ 1)

1) |

12) CGit1 < GenCandidates(FG;);

13) if (CGiy1 = 0) break; //i.e., break out from the “for” loop
14) SupportCount(CGit1); //requires one database pass

15) loop over the rows of CGiy1 (c)

16) {

17) if (c.pred _supp != c.supp) { //i.e., if ¢ is a generator
18) if (c.supp < min_supp) RGiy1 < RGit1 U{c};
19) else FGiy1 + FGiz1 U{c};
20) )
) )
22) }
23) Gr <« |, FGi; //frequent generators
24)  Gur < U, RGi; //minimal rare generators

2.4 Finding mRIs in an efficient way

Following Proposition 2.1, we may avoid exploring all frequent itemsets: instead,
it is sufficient to look after frequent generators only. In this case, mRIs, which are
rare generators as well, can be filtered among the negative border of the frequent
generators.

For finding minimal rare generators, we focus exclusively on frequent generators
and their downset in the lattice (see Algorithm MRG-Exp). Thus, frequent i-long
generators are joined to create (i+ 1)-long candidates. These undergo a series of tests.
On the one hand, the generator status is established following Proposition 2.2 with
the additional condition that all subsets of the candidate must be frequent generators.
Thus, non-generator frequent itemsets and non-minimal rare itemsets are discarded.
Next, frequency test against the database is used to separate frequent from (minimal)
rare generators.
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CG1 | pred _supp | key | supp RG1 | supp FG1 | supp
{A} 5 yes 4 {D} 1 {A} 4
{B} 5 yes 4 {B} 4
{C} 5 yes 4 {C} 4
{D} 5 ves 1 {E} 4
{E} 5 yes 4
CG2 | pred supp | key | supp RG> | supp FGy | supp
{AB} 4 yes 3 0 {AB} 3
{AC} 4 yes 3 {AC} 3
{AE} 4 yes 3 {AE} 3
{BC} 4 yes 3 {BC} 3
{BE} 4 — 4 {CE} | 3
{CE} 4 yes 3

CGs pred supp | key | supp RGS3 supp FGs | supp
{ABC} 3 yes 2 {ABC} 2 0
{ABE} 3 — 3 {ACE} 2
{ACE} 3 yes 2

CGy ‘ pred supp | key ‘ supp
0

Figure 2. Execution of the MRG-Exp algorithm.

The above reasoning is partly embedded into the GenCandidates function which
has three-fold effect. First, it produces the (i+1)-long candidate generators, using the
i-long frequent generators in the F'G; table. Second, all candidates having an i-long
subset which is not in F'G; are deleted. In this way, non-minimal rare itemsets are
pruned, and only potential generators are kept. Third, the function determines the
pred supp values of the candidates, i.e., the minimum of the supports of all i-long
subsets.

Later in the process, the pred supp is compared to the actual support of a can-
didate. If both values are different then the candidate is a true generator. Moreover,
depending on its support, it is either a frequent generator or a minimal rare one, i.e.,
an mRI.

The execution of MRG-FExp on dataset D with min_supp = 3 is illustrated in
Figure 2. The algorithm first performs one database scan to count the supports of
1-long itemsets. The pred _supp column indicates the minimum of the supports of all
(i — 1)-long frequent subsets. Itemsets of length 1 only have one frequent subset, the
empty set. By definition, the empty set is included in every object of the database,
thus its support is 100%. Comparing the support and pred supp values, it turns out
that all 1-itemsets are generators. Testing the support values, itemset {D} is copied
to RG1, while the other generators are copied to F'G;. In C'G; there is one itemset
that has the same support as one of its subsets, thus {BE} is not a (key) generator. In
the fourth iteration no new candidate is found and the algorithm breaks out from the
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main loop. When the algorithm stops, all minimal rare generators are found ({D},
{ABC}, and {ACE}).

2.5 Complezity of the mRG computation

The theoretical complexity of the above algorithm is bound to the complexity
of the levelwise algorithms for frequent itemset mining. Thus, due to the potentially
exponential size of the output, there is no point in establishing a conventional es-
timation thereof in terms of the O-based notation. Indeed, in the worst case there
will be exponentially many FGs, hence any comparable algorithm will have an ex-
ponential complexity function. Therefore, a more reasonable measure for efficiency
would be provided by the computational cost per single generator, the amount of
work to compute a single member of the entire FG/mRG family. Following [7], it is
easy to see that this quantity is bounded by a polynomial function of the following
factors: (1) the maximal size of a mRG/FG, (2) the size of the transaction database,
and (3) the number of items. As of the complexity class of the algorithm, it is nec-
essarily in the total polynomial class, following the classification of [9] for algorithms
that list all the solutions of a decision problem. The stronger notion of polynomial
delay, meaning that the delay between any two outputs of the algorithm (mRG) is
polynomial in the size of the input, is also satisfied. This is an important quality as
such algorithms take time linear in the combined size of their input and output.

3 Rare Association Rules

3.1 Basic concepts

An association rule is an expression of the form P; — P,, where P; and P are
arbitrary itemsets (P, P, C A), P, NP, = 0 and P> # 0. The left side, P; is called
antecedent, the right side, P, is called consequent. The support of an association rule
r: P — P» is defined as: supp(r) = supp(P1 U P»). The confidence of an association
rule r: P, — P, is defined as the conditional probability that an object includes P,
given that it includes Py: conf(r) = supp(PyUP,)/supp(P;). An association rule r is
called confident, if its confidence is not less than a given minimum confidence (denoted
by min_conf), i.e. conf(r) = min_conf. An association rule r with conf(r) = 1.0
(i.e. 100%) is an ezact association rule, otherwise it is an approzimate association
rule.

An association rule r is called frequent if its support is not less than a given
minimum support (denoted by min_supp), i.e. supp(r) = min_supp. A frequent
association rule is wvalid if it is confident, i.e. supp(r) = min_supp and conf(r) >
min_conf. Minimal non-redundant association rules (MNR) have the following
form: P — Q\ P, where P C @ and P is a frequent generator and @ is a frequent
closed itemset.

An association rule is called rare if its support is not more than a given mazimum
support. Since we use a single border, it means that a rule is rare if its support is less
than a given minimum support. A rare association rule r is valid if r is confident, i.e.
supp(r) < min_supp and conf(r) = min_conf. In the rest of the paper, by “rare
association rules” we mean wvalid rare association rules.
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3.2  Breaking the barrier

Recall that our goal is to break the barrier, i.e. to be able to extract rare
itemsets and rare association rules that cannot be extracted with the direct approach
used by conventional frequent itemset mining algorithms like Apriori. With the BtB
(Breaking the Barrier) algorithm we can extract highly confident rare association rules
below the barrier. The algorithm consists of the following three main steps.

First, for computing the set of minimal rare itemsets, the key algorithm is
MRG-Exp. MRG-FEzp finds frequent generators, but as a “side effect” it also explores
the so-called minimal rare generators (mRGs). MRG-Ezp retains these itemsets in-
stead of pruning them. In Section 2.2 we show that the set of minimal rare itemsets
is identical to the set of minimal rare generators (see Proposition 2.1).

Second, find the closures of the previously found minimal rare generators so as
to obtain their equivalence classes.

Third, from the explored rare equivalence classes it is possible to generate rare
association rules in a way very similar to that of finding (frequent) minimal non-
redundant association rules. We call these rare rules “mRG rules” because their
antecedents are minimal rare generators.

3.8 mRG rules

Two kinds of mRG rules can be distinguished, namely exact and approximate
rules. In this paper we concentrate on exact mRG rules that can be characterized as:

PiCPh

P; is an mRG

PyU(P,\ P1) = P, is a rare closed itemset
conf(r)=1.0

T P1:P2\P1,Where

From the form of exact mRG rules it follows that these rules are rare association
rules, where the antecedent (Py) is rare and the consequent (P \ Py ) is rare or frequent.
P; and P, are in the same equivalence class.

Since a generator is a minimal subset of its closure with the same support, these
rules allow us to deduce maximum information with minimal hypothesis, just as the
MNR rules. Using Kryszkiewicz’s cover operator [12], one can restore further ezact
rare association rules from the set of exact mRG rules.

Example. Figure 3 shows all the equivalence classes of dataset D. Support
values are depicted above to the right of equivalence classes. Itemsets with the same
support are grouped together in the same level. Levels are separated by borders
that are defined by different min_supp values. Next to each min_supp value, the
corresponding minimal rare itemsets are also shown. For instance, if min_supp = 4
then there exist 5 frequent itemsets (A, C, B, E, BE) and 6 minimal rare itemsets
(D, AB, AC, AE, BC, CE).

Suppose that the barrier is at min_supp = 4. In this case, using Apriori, the
less frequent association rules have support 4. With Apriori-Rare or MRG-Ezp, the
following mRIs are found: D, AB, AC, AE, BC and CE. Calculating their closures,
four rare equivalence classes are explored, as shown in Figure 4 (left). Note that not
all rare equivalence classes are found. For instance, the class whose maximal element
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is ABCE is not found because its generators are not mRIs, i.e. it is not true for ABC
and ACFE that all their proper subsets are frequent itemsets.

—_—

- N
- min_supp=1 - =
-~ mRI={} - min_supp=2
- mRI = {D}

min_supp=3
mRI = {D, ABC, ACE}

min_supp=4
mRI = {D, AB, AC, AE, BC, CE}

—

— -_—
min_supp=5
= — - mRI = {A, B, C, D, E}
~ —_

—_ —

Q equivalence class closed itemset generator

Figure 3. Rare equivalence classes found by BtB in dataset D at different min _supp values.

Generating exact mRG rules.  Once rare equivalence classes are found, the
rule generation method is basically the same as in the case of MAN'R rules. Exact
mRG rules are extracted within the same equivalence class. Such rules can only be
extracted from non-singleton classes. Figure 4 (center) shows which exact mRG rules
can be extracted from the found rare equivalence classes (Figure 4, left).

Generating approximate mRG rules. Approximate mRG rules are ex-
tracted from classes whose maximal elements are comparable with respect to set
inclusion. Let P; be an mRG, v(P;) the closure of P;, and [P;] the equivalence class
of P;. If a proper superset P of v(P;) is picked among the maximal elements of the
found rare equivalence classes different from [P;], then P, — P\ P is an approximate
mRG rule. Figure 4 (right) shows the approximate mRG rules that can be extracted
from the found rare equivalence classes (Figure 4, left).

4 Experimental Results

In this section we present the results of a series of tests. First, we compare
the performances of Apriori-Rare and MRG-FExp. Then, we provide results that we
obtained on a real-life biomedical dataset. Finally, we demonstrate that our approach
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closure supp. generators rule supp. conf. rule supp. conf.
ABDE 1 D D = ABE 1 1.0 AB — DFE 1 1/3
AC 3 AC AB=FE 3 1.0 AE — BD 1 1/3
ABE 3 AB, AE AE =B 3 1.0
BCE 3 BC, CE BC=FE 3 1.0

CE =B 3 1.0

Figure 4. Left: rare equivalence classes found by BtB in D with min_supp = 4. Center: exact

mRG rules in D with min_supp = 4. Right: approximate mRG rules in D with min_supp = 4.

is computationally efficient for extracting rare itemsets and rare association rules.
Thus, a series of computational times resulting from the application of our algorithms
to well-known datasets is presented.

The algorithms were implemented in Java in the CorRON platform [25].> The
experiments were carried out on an Intel Pentium IV 2.4 GHz machine running under
Debian GNU/Linux operating system with 512 MB RAM. All times reported are real,
wall clock times as obtained from the Unix #ime command between input and output.

For the experiments we have used the following datasets: T20I6D100K, C20D10K,
C73D10K, and MUusHrROOMS. Database characteristics are shown in Table 1. The
T20I6D100K* is a sparse dataset, constructed according to the properties of market
basket data that are typical weakly correlated data. The C20D10K and C73D10K
are census datasets from the PUMS sample file, while the MUSHROOMS® describes
mushrooms characteristics. The last three are dense, highly correlated datasets.

Table 1. Database characteristics

database # records # non-empty # attributes largest
name attributes (in average) attribute
T20I6D100K 100,000 893 20 1,000
C20D10K 10,000 192 20 385
C73D10K 10,000 1,592 73 2,177
MUusHROOMS 8,416 119 23 128

4.1 Apriori-Rare vs. MRG-Exp

In our experiments we compared Apriori-Rare and MRG-Ezp. The execution
times of the two algorithms are illustrated in Table 2. The table also shows the
number of frequent itemsets, the number of frequent generators, the proportion of
the number of FGs to the number of FIs, and the number of minimal rare itemsets.

The T20I6D100K synthetic dataset mimics market basket data that are typical
sparse, weakly correlated data. In this dataset, the number of FIs is small and nearly
all FIs are generators. Thus, MRG-FExp works exactly like Apriori-Rare, i.e. it has to
explore almost the same search space. The reason why MRG-FExp is a bit slower is that
MRG-FExp determines in addition the pred supp value of each candidate generator.

In datasets C20D10K, C73D10K, and MUSHROOMS, the number of FGs is much
less than the total number of FIs. Hence, MRG-Exp can take advantage of explor-

3 http://coron.loria.fr
4 http://www.almaden.ibm.com /software/quest /Resources/
5 http://kdd.ics.uci.edu/
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ing a much less search space than Apriori-Rare. Thus, MRG-Exp performs much
better on dense, highly correlated data. For example, on the dataset MUSHROOMS
at min_supp = 10%, Apriori-Rare needs to extract 600,817 FIs, while MRG-Exp
extracts 7,585 FGs only. This means that MRG-Fzp reduces the search space of
Apriori-Rare to 1.26%)!

Table 2. Response times of Apriori-Rare and MRG-Exp

min_supp execution time (sec.) # FIs # FGs ii?: # mRIs
Apriori-Rare_| MRG-Exp
T20I6D100K
10% 11.47 15.91 7 7 100.00% 907
0.75% 146.61 156.65 4,710 4,710 100.00% 211,578
0.5% 238.27 262.32 26,836 26,305 98.02% 268,915
0.25% 586.21 622.30 155,163 149,447 96.32% 537,765
C20D10K
30% 125.97 26.55 5,319 967 18.18% 230
20% 326.87 50.31 20,239 2,671 13.20% 400
10% 842.85 104.25 89,883 9,331 10.38% 901
5% 1,785.08 162.07 352,611 23,051 6.54% 2,002
2% 4,074.33 228.44 1,741,883 | 57,659 3.31% 7,735
C73D10K
95% 216.04 37.04 1,007 121 12.02% 1,622
90% 2,567.42 253.08 13,463 1,368 10.16% 1,701
85% 9,364.20 607.85 46,575 3,513 7.54% 1,652
MUSHROOMS
40% 13.73 6.00 505 153 30.30% 254
30% 46.10 12.64 2,587 544 21.03% 409
15% 869.27 40.68 99,079 3,084 3.11% 1,846
10% 3,097.16 69.23 600,817 7,585 1.26% 3,077

4.2 The Stanislas cohort

A cohort study consists of examining a given population during a period of time
and of recording different data concerning this population. Data from a cohort show a
high rate of complexity: they vary in time, involve a large number of individuals and
parameters, show many different types, e.g. quantitative, qualitative, textual, binary,
etc., and they may be noisy or incomplete. whose main objective is to investigate the
impact of genetic and environmental factors on variability of cardiovascular risk fac-
tors [17]. The cohort consists of 1006 presumably healthy families (4295 individuals)
satisfying some criteria: French origin, two parents, at least two biological children
aged of 4 or more, with members free from serious and/or chronic illnesses. The
collected data are of four types: (1) Clinical data (e.g. size, weight, blood pressure);
(2) Environmental data (life habits, physical activity, drug intake); (3) Biological data
(glucose, cholesterol, blood count); (4) Genetic data (genetic polymorphisms).

The experts involved in the study of the STANISLAS cohort are specialists of the
cardiovascular domain and they are interested in finding associations relating one or
more genetic features (polymorphisms) to biological cardiovascular risk factors. The
objective of the present experiment is to discover rare association rules linking biolog-
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ical rigsk factors and genetic polymorphisms. As a genetic polymorphism is defined as
a variation in the DNA sequence occurring in at least one percent of the population,
it is easily understandable that the frequency of the different genetic variants is rela-
tively low in the STANISLAS cohort, given that it is based on a healthy population.
Therefore, this fully justifies an analysis based on rare association rules [25].

Here is an example of the extraction of a new biological hypothesis derived from
the study of the STANTSLAS cohort. The objective of the experiment is to charac-
terize the genetic profile of individuals presenting “metabolic syndrome” (depending
on criteria such as waist circumference, triglyceride levels, HDL cholesterol concen-
tration, blood pressure, and fasting glucose value). A horizontal projection allowed
us to retain nine individuals with metabolic syndrome. Then, a vertical projection
was applied on a set of chosen attributes. Rare association rules were computed and
the set of extracted rules was mined for selecting rules with the attribute metabolic
syndrome in the left or in the right hand side. In this way, an interesting extracted
rule has been discovered: MS = APOB_71ThrIle (support 9 and confidence 100%).
This rule can be interpreted as “an individual presenting the metabolic syndrome is
heterozygous for the APOB 71Thr/Ile polymorphism”. This rule has been verified
and validated using statistical tests, allowing us to conclude that the repartition of
genotypes of the APOB71 polymorphism is significantly different when an individual
presents metabolic syndrome or not, and suggests a new biological hypothesis: a sub-
ject possessing the rare allele for the APOB 71Thr/Ile polymorphism presents more
frequently the metabolic syndrome. Other examples of rare rules can be found in [25].

4.8 Further experiments

We evaluated BtB on the four datasets mentioned before. Table 3 shows the
different steps of finding exact mRG rules. The table contains the following columns:
(1) Name of the dataset and minimum support values; (2) Number of frequent item-
sets. It is only indicated to show the combinatorial explosion of FIs as min_ supp
is lowered; (3) Number of mRGs whose support exceeds 0. Since the total number
of zero itemsets can be huge, we have decided to prune itemsets with support 0;
(4) Number of non-singleton rare equivalence classes that are found by using non-
zero mRGs; (5) Number of found exact (non-zero) mRG rules; (6) Total runtime of
the BtB algorithm, including input/output.

During the experiments we used two limits: a space limit, which was determined
by the main memory of our test machine, and a time limit that we fixed as 10,000
seconds. The value of the barrier is printed in bold in Table 3. For instance, in the
database C73D10K using Apriori we were unable to extract any association rules
with support lower than 65% because of hitting the time limit. However, changing to
BtB at this min_supp value, we managed to extract 3,675 exact mRG rules whose
supports are below 65%. This result shows that our method is capable to find rare
rules where frequent itemset mining algorithms fail.
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Table 3. Steps taken to find the exact mRG association rules

dataset # Fls # mRGs 7 rare eq. # mRG runtime of
and (non-zero) classes rules the BtB alg.
min_supp (non-zero, (exact) (sec.)
non-singleton)
D, 80% 5 6 3 5 0.09
T20I6D100K, 10% 7 907 27 27 25.36
0.75% 4,710 211,561 4,049 4,053 312.63
0.5% 26,836 268,589 16,100 16,243 742.40
0.25% 155,163 534,088 43,458 45,991 2,808.54
C20D10K, 10% 89,883 837 778 837 102.09
1% 6,194,967 15,433 12,485 15,433 302.97
0.5% 15,602,883 33,266 25,165 33,266 401.41
0.25% 40,450,371 62,173 41,915 62,173 640.95
C73D10K, 95% 1,007 1,622 1,570 1,622 59.10
5% 235,271 1,939 1,794 1,939 2,183.70
70% 572,087 2,727 2,365 2,727 4,378.02
65% 1,544,691 3,675 2,953 3,675 9,923.94
MusHrOOMS, 50% 163 147 139 147 3.38
10% 600,817 2,916 2,324 2,916 74.60
5% 4,137,547 7,963 5,430 7,963 137.86
1% 92,894,869 37,034 16,799 37,034 321.78

5 Conclusion

Frequent association rule mining has been studied extensively in the past. The
model used in all these studies, however, has always been the same, i.e. finding all
rules that satisfy user-specified min_supp and min_conf constraints. However, in
many cases, most rules with high support are obvious and/or well-known, and it is
the rules of low support that provide interesting new insights.

In the first part of the paper, we presented an approach for rare itemset mining
from a dataset. The traversal of the frequent zone in the space is addressed by two
different, algorithms, a naive one, Apriori-Rare, which relies on Apriori and hence
enumerates all frequent itemsets; and an optimized one, MRG-Fxp, which limits the
considerations to frequent generators only. Experimental results prove the interest of
the optimized method on dense, highly correlated datasets.

In the second part of the paper, we presented a novel method to extract interest-
ing rare association rules that remain hidden for conventional frequent itemset mining
algorithms. To the best of our knowledge, this is the first method in the literature
that can find strong but rare associations, i.e., local regularities in the data. These
rules, called “mRG rules”, have two merits. First, they are maximally informative in
the sense that they have an antecedent which is a generator itemset whereas adding
the consequent to it yields a closed itemset. Second, the number of these rules is min-
imal, i.e. the mRG rules constitute a compact representation of all highly confident
associations that can be drawn from the minimal rare itemsets.
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