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Abstract— Some people claim AI-ML suffers from a 

reliability glass ceiling effect, around ~10-2/inference, that makes 

it incompatible with safety-criticality by several orders of 

magnitude. Others advocate that safety nets and development 

assurance will overcome this gap so that there is no real concern 

indeed. We propose an explanation to the reliability plateauing 

phenomenon based on geometry of approximant adjustment, 

and on ML verification practices. We advocate the need for a 

new field we coined as HR ML (Highly Reliable) and UHR ML 

(Ultra Highly Reliable). Relying on Topological Data Analysis in 

high dimensions, its aim is to supplement data-science point-

based verification with volume-based verification in order to 

meet the needed 10-5 / inf. error rates (and beyond). We argue 

that process-based ML assurance and safety monitors alone will 

not overcome the reliability barrier. Our HR-ML concept for 

safety-related applications is a research proposition at the 

confluence of ML assurance and system assurance. 

Keywords— machine learning, ML reliability, safety 

assurance, ML assurance, latent manifold, extensional coverage 

analysis, Topological Data Analysis (TDA). 

I. INTRODUCTION 

Data analysis and statistics developed over centuries to 
extract synthetic information from population data as insights 
on complex phenomena. Inferential statistics focused on 
explanatory models of past observations, then used as 
predictors. Accuracy and consistency of estimators were the 
guarantees mathematics had to lay down. Never, until 
recently, had statistics to address safety-sensitive ‘control’. 
We use ‘control’ in the broad sense of OODA loops 
(Observation, Orientation, Decision, Action), or any part 
thereof, where physics is involved with life, goods or 
environment exposition. 

Machine Learning, especially Deep Learning (DL), 
opened a new era: unprecedented performances in machine 
vision and problem solving in higher dimensions, while being 
plagued by severe brittleness issues. Could DL, however, if 
supplemented with development assurance and fault-
tolerance, meet the requirements of safety-sensitive ‘control’? 
We investigate this question. We consider safety-
sensitiveness (low to medium severity) and safety-criticality 
(catastrophic consequences). Our focus is limited to ML 
reliability, ML verification coverage, and to safety assurance 
of ML-dependent systems. 

To our knowledge [1], the best image classification score 
obtained by ML on the MNIST benchmark is 3.10-3. From a 
safety assurance perspective, this reliability score is poor. To 
cope with this matter of fact, [1] screened the techniques 
amenable to improve ML reliability. They questioned the 
feasibility of reaching the levels required by the higher 
assurance levels and concluded negatively. After some 
scoping and terminological preliminaries, we summarize this 
survey. Then we propose geometric reasons to explain why 
the reliability enhancement methods uniformly failed 
(sections II, III, IV). 

Are there any solution to this problem? We explain why 
software assurance will have no impact on it (section V), and 
why fault-tolerant architectures solve only the easy cases 
(section VI). At this stage, we conclude that for true ML-
dependent safety-sensitiveness and safety-criticality, there is 
no escape from improving ML reliability by orders of 
magnitude (3 to 5). Is it possible? From a geometric 
perspective, the complexity of the task is so high that there are 
many reasons to be hopeless. However, thanks to recent 
advances in Topological Data Analysis (TDA) in higher 
dimensions we propose to control sampling and adjustment 
more tightly. We coin ‘HR-ML’ (Highly Reliable) and ‘UHR-
ML’ (Ultra Highly Reliable) this TDA-augmented and 
dependability-oriented variant of Machine Learning. As of 
writing this paper, we have no evidence to back the feasibility 
of our (U)HR-ML proposal. It is our best constructive and 
research perspective to overcome the reliability glass ceiling 
phenomenon. 

Contribution: we propose a diagnosis on the ML-
reliability plateau. We ground it at the confluence of data 
science, topological data analysis and system safety 
assurance. We propose orientations to supplement the 
classical point-based approach with a more progressive and 
volume-based approach to sampling coverage and adjustment 
verification. 

Disclaimer: The views expressed in this paper are those of 
the authors as members of the Embedded France Working 
Group on safety assurance standards [24]. They do not reflect 
the opinion of their affiliations. 



II. SCOPING ML-DEPENDENT SAFETY 

A. System Perimeter 

We address safety-sensitive and safety-critical embedded 
systems. Our prototypical use case in automotive is pedestrian 
detection systems coupled to automatic-braking systems. In 
aeronautics, autonomous flying cabs and drones are the ML-
dependent examples we have in mind. More generally, we 
consider ML-dependent vehicle control, formation control, 
product health monitoring (PHM), and all kinds of operational 
technologies (OT). We question the possibility of 
transitioning from ML-dependent advisory mode to ML-
dependent full-authority mode, by relying only on assurance 
and safety monitors to overcome the ML- reliability gap. 

B. ML Perimeter 

We consider off-line supervised learning in high to very 
high input-space dimension (e.g. the pixel count of the image 
feed to ML-classifiers, i.e. typically 104 to 106 and beyond). 
We exclude continuous learning. We exclude ML 
developments like ChatGPT. Regarding the ML-safety survey 
[5], we only address Robustness and Monitoring. 
Transformers, Q&A systems, representation learning, ethics, 
or Alignment are important issues out of scope of this paper. 

III. TERMINOLOGICAL PRELIMINARIES 

We recall a few definitions used in the sequel. 

A. Machine learning 

 Approximant, any function ℝn → ℝp, estimator of an 
underlying function specified by texts and datasets. 
We use ‘ML-model’ (after adjustment) as synonymous 
of fitted approximant. 

 Inference, and generalization, are used as 
synonymous: activation of the approximant on an input 
vector not seen during the training, validation and 
testing. 

 Ambient space, also named embedding space: the 
space where spread the vectors (or points) of the 
datasets. Depending on the context, we use “ambient 

space” for input only (nD), input-output ((n+p)D) or 

output only (pD) space. 

 Latent space or latent manifold, the regions of ambient 
spaces where the sample points concentrate. Latent 
space has its own dimension named latent dimension. 

 Dimension reduction. The classical interpretation is 
the process of identifying the input space features that 
are salient in conditioning the form of the output latent 
manifold (i.e. sensitivity analysis). It is used to select 
the prominent ones (e.g. PCA). We never use this 
meaning. We only consider ambient to latent 
dimensionality reduction, if any …, by shifting from 
external view of the latent manifold, to internal and 
intrinsic view of it. 

B. Logics 

 Extensional, qualifies extension as defined in 
“Extension Theory” [6], i.e. vector encoding of 
magnitudes for geometric and algebraic calculation. 
Two approximants are extensionally equivalent when 

                                                           
1 Depending on this choice TDA uses different types of point to point-set distances: off-sets in the 

deterministic case, distributional (KL-divergence, Wasserstein, earth-move) in the statistical case. 

they have the same external (“black-box”) behavior, 
i.e. they form the same output space when exercised 
over their common input domain. 

 Intensional, qualifies objects or sets defined by 
indicator functions. Intensional equality is Leibnitz 
equality : “no discriminative property”. Intensional 
equality is ’white box’ and implies extensional 
equality. The converse is false. 

IV. ML-RELIABILITY GLASS CEILING 

A. Reliability augmentation techniques 

In [1], researchers investigated the means to improve ML 
reliability. Though ML made major progress over the last 
decade (1 to 2 orders of magnitude in accuracy), 10-3/inference 
is poor from safety perspective. The paper reviews 
quantitative results obtained by model diversification, 
monitoring (ODD, robustness, I/O consistency), by robustness 
enhancement techniques (model stability and training 
stability), by selective classification, conformal prediction, 
and temporal redundancy on sequences. The main conclusion 
is the following: all the methods that tried to increase 
reliability by redundancy of “independent” models, i.e. by 
independent hyper-parameters, independent datasets and 
independent optimization processes, succeeded marginally. 
Reliability stayed in the range of 10-2 / inference instead of the 
expected 10-4 = 10-2 * 10-2 or 10-6 = 10-2 * 10-2 * 10-2. 
Moreover, all the listed techniques improved the reliability 
performance marginally at the expense of availability losses. 

B. Common Cause Analysis 

Strong correlation of inference errors between 
independently developed ML-models is an experimental fact 
evidenced by the studies reported in [1]. What could be the 
explanation? Our working hypothesis is that the complexity of 
the latent manifolds’ forms to be fitted is the common mode 
between the so-called “independent” redundancies. 
Depending on the specific nature of the ML application to be 
developed, the adjustment problem and its associated 
assurance policy may be addressed in a deterministic 
geometric setting (smooth latent manifold) or 1  in a noisy 
aleatoric setting (statistical latent manifolds). 

Fig. 1. 2D smooth manifold reconstruction (green surface), in 3D ambient 

space from red sample points. The picture is based on courtesy of [7]. 

We use this form as an example of regions hard to fit (surrounded by 
dotted-ellipses) and likely to cause poor inference reliability. This 

adjustment difficulty is (far) higher in higher dimensions. The ML-

model redundancies are intensionally independent. Our interpretation 
of the marginal gain is that the redundant approximants are 

extensionally correlated by the ‘shape of the problem’ to solve, i.e by 

the shape of the latent IO-manifold to adjust with. 



C. Plateauing performance 

Fig. 2. 1D latent manifolds in 3D ambient space. Limiting generalization 

errors to extremelly small quantities (10-k k ≥ 5).requires controlling 

regularization with extreme precision, first locally, and then globally. 
Notice the impact of fitting variability on the projected curves (picture 

is courtesy of [8]). 

When the approximant space is defined by the solution to 
(n – 1) polynomial equations (n-variable-polynomials) the 
ambient space is nD, and the latent space is 1D. Given k points 
in the nD space, the existence of an interpolation curve linking 
these k points is still an open mathematical problem. By 2022, 
a proof of existence was published on the Web and is under 
peer-review [9]. In case of confirmation, more than a century 
will have been necessary to solve the (1-latent, n-ambient) 
case for an intensively investigated approximant space: the 
algebraic curves. 

This example substantiates the complexity of function 
fitting in high dimension. Collision avoidance or drone 
control, or any real life ML application requires solving even 
more complex adjustment problems. We suggest that high 
reliability of adjustment necessitates tighter control of the 
complex geometric solving process than with current black-
box optimizers. 

D. Zero-measure verification 

Figure 2 visually suggests the difficulty of point-cloud 
fitting when only a few points are available. Information 
contained in dataset specifications is poor. Meeting failure 
rates as low as 10-k /inference, k ≥ 5, is highly demanding. 
Sample-oriented by nature, statistical estimation of functions 
naturally relies on point-based verification. Verification 
coverage of an estimated continuous function (regressor or 
separator) by means of some N-sample-dataset is N*0=0 in 

volume. At the opposite, the nD volume over which the 
estimated function has to generalize with high reliability is 
gigantic. Even worse, the definition domain of approximant is 
… undefined. There is a great discrepancy between the limited 
control of adjustment, the absence of formal input-domain 
definition, and the inference reliability levels required by 
safety. 

E. ’One-shot’ global adjustment 

Complexity of ML is high and may be compared to that of 
non-linear control. Shape complexity of phase spaces 
(differential geometry and differential topology) compels 
control engineers to start by designing local control laws 
(dynamic regimes), and to progressively ‘glue’ them by 
scheduling and switching up to covering the global reachable 
state space. Our guess is that ML ensuring high levels of 
inference reliability can’t afford monolithic, “one-model-fits-
all” global trade-off over a gigantic domain. Like for non-
linear control, (U)HR-ML is likely to necessitate a local-to-
global approach: the global model would be a scheduler of 
precisely fitted local models. Because of varying curvature, 

varying dimensionality, and complex varying topologies as 
illustrated on fig. 1, fitting reliably a single approximant, even 
over-parameterized and with high capacity, might be illusory. 
Possibly, for a situation like that of fig. 1, 10-1 is reachable with 
a single ML-model, whereas one would need to schedule five 
local ML-models to meet a global 10-4 target: three models for 
the three difficult twistetd and entangled regions, plus one 
model for each of the two remaining ‘easy’ parts. 

V. ML-RELIABILITY GAP FILLING BY SOFTWARE 

ASSURANCE? 

Some people advocate that reliability of 10-2 / inf. at ML 
model level could become 10-5 / inf. after implementation, 
provided the software is developed under DAL A assurance. 
The reason would be that “DAL A development delivers high 
integrity software” and “high integrity software is 10-k /h 
reliable”. 

The goal of software assurance is to ensure fidelity of the 
transformation process that converts a specification such as an 
ML-model (e.g. TensorFlow mathematical equations) into 
binary code instructions. Fidelity, also named compliance, 
means ensuring extensional equivalence between the ML-
model and its executable object code. In other words, 
regarding reliability of inference, DAL A ensures high trust 
on reliability invariance i.e. “garbage in, garbage out”, not 
magic reliability augmentation during the translation flow. 

Notice that explaining why there is no reliability 
augmentation with assured software is not bringing discredit 
on the value of software assurance. One may found more 
information on the link between qualitative and quantitative 
aspects of development assurance in [10]. 

VI. ML RELIABILITY GAP FILLING WITH FAULT TOLERANCE? 

We claim that safety nets can handle only the easy cases 
of ML-dependent unreliability in safety-sensitive or safety-
critical systems. In other words, the cases where risk does not 
depend on the performance premium uniquely provided by 
ML techniques, especially Deep Learning. 

Let us consider our pedestrian collision avoidance or GPS-
denied drone landing examples. Deep Learning systems have 
by far outperformed any other classical certifiable approach in 
machine vision. If some classical and underperforming vision 
monitor is sufficient to ensure controllability, then the DL-
dependent channel provides just perception performance 
bonus (advisory mode, no true ML-dependent criticality). 
Otherwise, i.e. when ML-capability is mandatory to reach the 
required performance level, the monitor must have equivalent 
or just slightly lower performance, and thus cannot be 
implemented with classical underperforming machine vision. 
And in this case we face the above-mentioned issue that 
combining two independent ML models may not significantly 
improve reliability. 

Safety nets alone are not a solution to circumvent the 
reliability glass ceiling problem when one needs COM+MON 
dependence on ML’s distinctive (but brittle) performance 
superiority. 

VII. TDA-ENABLED (U)HR ML PROPOSAL 

Let us recap where we are at this stage. We have proposed 
an explanation of the ML reliability gap (10-2 /inference .vs. 
10-5 /inference or better): adjustment failure on higher 
dimensional difficult topological regions that correlate any 



number of so-called “independent” approximants. We have 
justified why reliability of generalization must improve to 
meet ML-dependent dependability requirements in the 
difficult cases. We are facing a single point of failure that 
cannot be prevented by development assurance, nor be 
passivated by monitors in the true ML-dependency cases. We 
advocate that improving ML reliability, i.e. shifting from ML 
to (U)HR-ML, is the only path to reach full-authority safety-
sensitive ML-dependent ‘control’ (DAL C and beyond). 

Our last two sections are prospective. We propose means 
drawn from Computational Geometry (CG) and Topological 
Data Analysis (TDA) in higher dimensions [11] to support 
High Reliability Machine Learning. In case of success, UHR-
ML would follow along similar lines, but with ever-tighter 
sampling and adjustment control. Better awareness of 
adjustment’s geometric (local) and topological (global) 
complexity is to our opinion the ‘missing link’ to meet the 
needed higher reliability levels on point-cloud generalization. 

A. Semantics of emptiness 

High dimensional void is the ambient space of training and 
test datasets. Emptiness around samples may result from 
principled design choices or from loopholes. Emptiness may 
be full of missing information that prevents from meeting the 
reliability target. We distinguish four types of voids: 

1) Causal impossibility 
Physics, scene or environment evolution laws, operational 

concepts or ODD constraints may prevent the generation of 
samples in definite regions of the input space. It leads to 
distant clusters i.e. to disconnected sums of sub-manifolds in 
topological language. 

2) Sample incompleteness 
The sampling plan or data-collection process, compliant 

with the ODD and with the ML-model’s textual specification, 
may overlook some input space regions. Depending on local 
regularity and on approximation sparsity, these sampling 
lacuna may or may not constitute potential sources of 
inference errors. 

3) Designed separability 
In classification, separation and separators (i.e. intended 

void regions) may be looked after and engineered (e.g. 
SVMs). 

4) Designed sparsity 
When variance is assumed bounded (e.g. Lipchitz) and 

regularity is well understood, sampling and approximant 
structure may be sparse. Computation tractability and energy 
saving are the intended benefits of extensional and intensional 
sparsity. In that case, the intended voids are not sampling 
lacuna, there is no missing information. 

In summary, regarding sampling coverage analysis, our 
TDA-enabled (U)HR-ML proposal deals with exploration of 
point-cloud forms to identify the shape of the higher 
dimensional voids (see fig. 5). In other words, it would consist 
in detecting the unintended informational lacunas as potential 
inference unreliability sources, or adjustment complexity 
sources. 

                                                           
2 In Distribution - Out of Distribution 

B. Design of sample-interpretation hypotheses 

TDA offers a portfolio of algorithms to analyze point 
clouds in 2D, 3D, and higher dimensions. We focus on 
persistence homology (PH) which plays a central role in TDA. 
In our context, Persistent Homology may be seen as a means 
to mesh the latent manifolds. It is used in ML for clustering 
and for feature engineering (e.g. [12], [15]). We propose a new 
application of PH to machine learning, in order to overcome 
the low reliability barrier: sampling coverage analysis and 
adjustment verification coverage analysis.  

Roughly, PH computes a growing sequence of balls 
centered on each point of the dataset. For each ball radius of 
the sequence, named filtration, it computes the ball 
intersections and creates edges between the centers of 
intersecting balls (see the four filtration steps of fig. 5). These 
edges constitute a mathematically well-founded nested mesh 
(simplicial complex) that enables reasoning on a discrete 
approximation of point cloud shapes, i.e of latent manifolds. 
In particular, PH focuses on the creation of cycles, of cavities 
and holes, and disappearance thereof as ball radius grows 
during the filtration process. It ends when the radius is so large 
that all balls intersect and no inner void is left within the point 
cloud. 

Figure 5 shows an example of a 2D point cloud. We 
propose to use PH filtration as a (U)HR-ML data engineering 
practice to design the best ODD-compliant interpretation of 
the training point cloud. Output of this task would be the ID-
OoD 2  oracle of the approximant. For computational 
tractability, latent dimension must be far lower than ambient 
dimension. Geometrical Deep Learning [4] is pivotal here: 
latent dimension may collapse in datasets only if sampling is 
performed for the quotiented latent I-manifold by the ODD-
compliant symmetries [16], [21]. 

Fig. 3. This figure illustrates a process that would be distinctive of (U)HR-

ML: design of a “meaning” to point clouds. Four steps of persitence 

homology filtration are represented. In the upper part of the figure are 
examples of typical questions to interpret the filtration step (the green 2D-

balls centered on the sample-points). At bottom we wrote examples of 

interpration decisions that could lead to select this step. PH does not compute 

a model, it computes a sequence of models. The selection of an interpretation 

would start the task of explicit definition of the approximant’s domain. 

C. Formal definition of domains or supports 

To our opinion, HR-ML’s approximants will require 
formal and executable definition of their domain (i.e. of their 
precondition in formal method language). PH offers means to 
define ID-OoD oracles in a way that does not depend on 
distributional assumptions or ML techniques like VAEs, 
GANs etc. [22]. 



D. Extensional verification coverage analysis 

We envision PH-based construction of latent space meshes 
as means to guide scrutiny of generalization reliability. 
Datasets augmented with a few “interpretation meshes” (Fig. 
5) selected from the filtration could support verification 
coverage criteria. We name extensional coverage analysis this 
(hyper-) volume-based verification activity. It would be the 
extensional counterpart of structural coverage analysis in 
software (e.g. DC, MC/DC criteria). Such latent-space 
oriented verification coverage ideas are being explored in 
[23]. 

Fig. 4. Filling the ML reliability gap by better verification coverage 
techniques. Extensional verification should ensure non-zero measure 

coverage. PH’s simplicial complexes are volumes (hyper-tetrahedrons) 

within which approximants could be massively tested or formaly proved 
when possible (e.g. Reluplex). This would be principled extensional 

verification approach to mastery of complexity [17]. 

E. Dependent directional statistics in higher dimensions 

Entanglement of deterministic and stochastic processes 
generate the samples of ML applications. The deterministic 
part of sample dependences invalidate the pivotal i.i.d 
hypothesis of probability and statistics. ML and (U)HR-ML 
require sophisticated statistics on manifolds [18], [19], [13]. 
Our proposed use of topological inference to support 
awareness of adjustment complexity is also intended to 
support high-dimensional non-asymptotic statistics (e.g. by 
aggregating empirical concentration information during the 
filtration process). 

VIII. (U)HR-ML ASSURANCE 

Our orientation is risk-based and product-based assurance, 
as possibly contributing process-based [2] and property-based 
assurance [3]. 

A. Geometric perspective on ML risks 

On basis of our preceding diagnoses and proposals, our top 
3 risks on ML-dependent ‘control’ programs are: 

1) Information shortage at specification stage 
Dataset-specifications ensure that almost nowhere we 

have information on the program’s intended behavior. Almost 
everywhere, the unreliability risk is looming. This 
specification information shortage is an essential difference 
with classical software engineering. It is specific to machine 
learning. It could invalidate the assurance concept of 
potentially realizable “perfect development” that prevails in 
software assurance. This concept grounds the Fault 
Elimination policy in development (Dev). Known bugs that 
may be fixed should be fixed (no hidden defects). 

 

2) Undefined inference domains 
In high dimensions, explicit definition of distribution 

supports and of approximants’ ID-OoD oracles are still open 
problems. It is a barrier to HR and UHR ML. We propose a 
PH-based approach to try overcoming this problem. 

3) Adjustment complexity 
Defined in VII.D, we proposed volume-based extensional 

verification activities as mitigation means. 

B. Assurance policy on known residual faults by end of 

development 

For high criticalities, if Authorities decide that a fault-free 
development should exist and should be approached as far as 
reasonably possible (ALARP), like for software for instance, 

then DAL A ML-models transitioning from Dev to Ops should 
be free of known faults (Eliminative assurance policy). Under 
this policy, exposing life and goods to failures originating 
from remaining known and fixable faults is unacceptable. On 
the contrary, if the remaining known faults are unavoidable, 
i.e. there is no notion of possible “perfect” development; 
Quantitative ML assurance policy is acceptable. Because of 
the information shortage problem specific to ML, Eliminative 
policy could be inapplicable and Quantitative policy on ML-
software might become acceptable (i.e. sufficient rareness of 
failure occurrences). Such a decision seems under way in 
aeronautics as assurance concept [2]. 

The quantitative policy assumes existence of engineering 
capabilities to predict the future Ops-failure rates from the 
failure rates observed at Dev-time. It also assumes in-service 
data logging and mining. In a continuous development / 
continuous assurance setting (e.g. [2]), the Dev-failure events 
and Ops-failure events are altogether continuously managed. 
For high criticality levels, and from a “classical software” 
assurance perspective, introducing reliability quantification 
on software-implemented ML-models is a significant 
paradigm shift. Figure 5 proposes a SWOT analysis of this 
shift. 

Fig. 5. SWOT of the “pan-statistical” option in ML assurance. Difficulty to 

get valid risk quantifications and possible regressive enforcement of fault 

elimination policy are its drawbacks. 

IX. OPEN SCIENCE EXPLORATION 

Accessibility of foundational principles, availability of 
mature and affordable tools, and availability of skills are the 
prerequisites for acceptance of new engineering practices and 
assurance rationales in certification. Our next steps are 
oriented toward meeting some of these requirements. Short- 
to mid-term actions are development of a few use cases to test 
the feasibility of (U)HR-ML in “low-higher dimensions” 
(latent-D < 100). The first milestone is 10-4 on MNIST. 



X. CONCLUSION 

Our starting point was the following question: in spite of 
ML-reliability plateauing performance, could current ML best 
practices, supplemented with safety monitoring and ML 
assurance, altogether meet the reliability requirements of ML-
dependent safety? We proposed a group of reasons, centered 
on geometric complexity of approximant adjustment in higher 
dimensions, to explain the ML reliability glass ceiling, and the 
insufficient effectiveness of independent redundancies. Point-
cloud forms may be too complex to fit, dataset geometric 
information too poor, and goodness-of-fit too loosely verified 
to meet the required 10-k levels. Safety nets and ML assurance 
alone are unable to overcome this intrinsic and experimentally 
established barrier when no impact on function’s availability 
is required. Our answer to our initial question is “no”; 
something is missing. 

We argued that optimizer-synthesis of safety-sensitive 
‘control’ programs from datasets requires more than pure 
data-science and statistics. We coined (U)HR-ML our 
proposal of ML augmentated engineering. We put forward 
computational geometric and topological inference in higher 
dimensions as our privileged supplement. We focused on 
application of persistence homology in TDA to formally 
define the approximants’ inference domains, and to tightly 
control sampling and adjustment quality. 

Finally, we discussed the two possible assurance policies 
applicable to (U)HR-ML: Eliminative and Quantitative. We 
analyzed ML-fault elimination at development-time, and ML-
failure quantification at operation-time. Considering the 
DevOps, MLOps and continuous assurance trends, we 
advocated flexible mixes of the two assurance policies. 
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