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Summary statement: Our results show that cofilin1 controlled migration patterns are 

essential for positive selection of thymocytes and differentiation into T cells 
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Abstract 

Actin dynamics is essential for T cell development. We show here that cofilin1 is the 

key molecule for controlling actin filament turnover in this process. Mice with specific 

depletion of cofilin1 in thymocytes showed increased steady state levels of actin 

filaments, and associated alterations in the pattern of thymocyte migration and 

adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a 

parameter that influences the migration pattern in a 3-D environment. In a collagen 

matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. 

Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis, or surface 

receptor trafficking. However, in cofilin1 mutant mice impaired adhesion and migration 

resulted in a specific block of thymocyte differentiation from CD4/CD8 double positive 

thymocytes towards CD4 and CD8 single positive cells. Our data suggest that tuning of 

the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and 

essential for positive selection during T cell differentiation. We describe a novel role of 

cofilin1 in the physiological context of migration dependent cell differentiation.  
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Introduction 

Differentiation of ,T cells follows a complex sequence of molecular events that take 

place in spatially defined niches of the thymus. T cell development comprises several 

distinct stages, each of which is tightly regulated to generate mature and non-self-

reactive T lymphocytes: CD4-/CD8- double negative (DN) precursors develop into 

CD4+/CD8+ double positive (DP) cells, before they finally differentiate into CD4+ 

(CD4SP) or CD8+ (CD8SP) single positive thymocytes. The DN cell population can be 

further characterized by the expression of CD25 and CD44 (Ceredig and Rolink, 2002; 

Godfrey et al., 1993), or functionally by a rearranged T cell receptor (TCR)  locus. 

After successful -chain arrangement and expression of a functional pre-T cell receptor, 

DN thymocytes rapidly proliferate into double-positive DP cells and express markers 

such as CD69 (Von Boehmer et al., 1999). DP cells next undergo TCRα chain gene re-

arrangement, in order to assemble the final ,TCR complex, which is required for 

positive and negative selection and generation of CD4 or CD8 single positive (SP) 

thymocytes (Jameson and Bevan, 1998; Sebzda et al., 1999). Only then SP 

thymocytes are licensed to exit the thymus and to constitute the T cell compartments of 

the immune system.  

Work from many groups has shown that T cell development is not simply following an 

autonomous programme, but rather depends on defined spatial cues provided by cell-

cell contacts with epithelial stroma cells in the thymus. In this process thymocytes were 

found to follow a distinct migratory path between certain areas in the thymus (Lind et 

al., 2001; Porritt et al., 2003). In the cortex, CD4+/CD8+ thymocytes recognise MHC 

ligands on thymic epithelial cells. After successful positive selection, thymocytes then 

migrate to the central medullary region where they undergo negative selection 

(Anderson and Jenkinson, 2001) and elimination of thymocytes which recognise self-

peptide-MHC on dendritic and medullary epithelial cells (Le Borgne et al., 2009). To 

coordinate this process the cortical and medullary compartments produce distinct 

chemokines including SDF-1α and CCL25 (Ladi et al., 2006; Love and Bhandoola, 

2011; Takahama, 2006), and provide integrin mediated adhesion through LFA1/ICAM-

1 (Fine and Kruisbeek, 1991). 

Mutations affecting chemokine signaling or disturbing adhesion can lead to severe 

changes in thymocyte development (Lancaster et al., 2018; Savino et al., 2004; Uehara 
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et al., 2002a; Uehara et al., 2002b). Interestingly, many of these pathways are located 

upstream of cytoskeletal dynamics. For example, small GTPases are components of 

the main signaling pathways to cytoskeletal dynamics and have been shown to 

regulate thymocyte development (Cleverley et al., 1999; Galandrini et al., 1997), Rac-1 

specifically positive and negative selection (Gomez et al., 2001), and WASP was 

shown to control thymocyte development (Zhang et al., 2002). 

Furthermore, T cell activation through the TCR requires a scaffold of actin filaments 

(Bunnell et al., 2001; Dustin and Cooper, 2000; Monks et al., 1998; Samstag et al., 

2003). Actin polymerisation was shown to be required for T cell polarization (Delon et 

al., 1998; Stradal et al., 2006), the formation of the contact zone (Sechi and Wehland, 

2004), and T cell activation via calcium flux, IL-2 production and proliferation 

(Penninger and Crabtree, 1999). Cell adhesion through integrins was shown to be 

stabilized by the actin cytoskeleton (Brakebusch and Fässler, 2003). Actin nucleation-

promoting factors such as the Abi/WAVE complex or Ena/Vasp can control TCR-

mediated actin dynamics (Krause et al., 2000; Nolz et al., 2006; Zipfel et al., 2006). In 

conclusion, mutations in regulators of the cytoskeleton were shown to cause profound 

defects in lymphocyte function (Billadeau et al., 2007). 

However, little is known about the actual mechanisms, by which actin binding proteins 

translate the signals into T cell function. To tackle this question, we need to focus on 

the downstream effector proteins that directly induce actin filament growth and 

shrinking. In this context the F-actin depolymerising proteins of the ADF/cofilin family 

are among the best studied molecules. ADF/cofilin members control the on- and off-

rate of actin monomers from the filament ends (Carlier et al., 1997), and preferentially 

sever old (ADP-rich) actin filaments  (Maciver et al., 1991; McGough et al., 1997). In 

mouse and human three genes, cofilin1, cofilin2 and ADF are encoded in the genome. 

They differ in their activities, expression pattern and biological functions (Nakashima et 

al., 2005; Vartiainen, 2002). ADF/cofilin were shown to control motility in cultured 

fibroblast and carcinoma cells (Ghosh et al., 2004; Kato et al., 2008), as well as in 

human CD4 T cells and Jurkat cells (Nishita et al., 2005; Xu et al., 2012).  

Systemic deletion of cofilin1 in the mouse was shown to be embryonic lethal (Gurniak 

et al., 2005), a cofilin2 mutation resulted in a severe myopathy phenotype (Gurniak et 

al., 2014), while ADF deficient mice were viable (Bellenchi et al., 2007). These genetic 

studies indicated that cofilin1 cannot be functionally replaced by the other two 
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ADF/cofilin members. Indeed, in macrophages chemotaxis, adhesion, and antigen 

presentation were shown to depend on cofilin1 (Jönsson et al., 2012; Matsui et al., 

2001), and in mature T cells cofilin1 was shown to provide a link between co-

stimulation and the concomitant rearrangement of the actin cytoskeleton (Lee et al., 

2000; Samstag et al., 2003). Cofilin1 has been studied with respect to T cell activation, 

however its function in the classical differentiation of / T cells in the thymus has been 

addressed only recently. It was shown that expression of a mutated cofilin1 protein can 

block T cell differentiation already at the DN stage (Seeland et al., 2018). 

Here we show a new function of cofilin1 as a pacemaker of thymocyte migration and T 

cell differentiation in the thymus. Our data identify the turnover of actin filaments as a 

central mechanism in T cell development. We also present a mechanism by which 

cofilin1 controlled resting cycles can affect cell-cell interactions essential for the 

differentiation of DP thymocytes into mature SP T cells.  

 

Results 

Cofilin1 controls actin polymerisation cycles and steady state levels of F-actin in 

thymocytes 

The aim of our experimental strategy was to genetically interfere with actin dynamics in 

developing thymocytes by slowing down actin filament turnover. We have shown 

previously that among the three cofilin/ADF genes, cofilin1 is the predominant actin 

filament severing factor in hematopoietic cell types (Jönsson et al., 2012). Using 

isoform specific antibodies for ADF, cofilin1 and cofilin2, we confirm here that only 

cofilin1 was expressed in thymocytes, while ADF and cofilin2 could not be detected 

(Fig. 1A). In thymocytes, cofilin1 expression was found to be developmentally 

regulated (Fig. 1B). While expressed at very low levels in CD4/CD8 double negative 

thymocytes (DN), cofilin1 expression increases in CD4/CD8 double positive 

thymocytes (DP), and reaches its highest expression in CD4 or CD8 single positive 

thymocytes (CD4SP, CD8SP). Interestingly, also total actin levels were found to 

fluctuate significantly during thymocyte differentiation, resulting in the highest 

cofilin1/actin ratio in DP thymocytes. Deletion of cofilin1 in thymocytes should therefore 

be an ideal tool to blunt actin dynamics in T cell development in vivo. 
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To achieve this, we crossed mice carrying a floxed cofilin1 allele (Gurniak et al., 2005) 

(Fig. 1C) to a CD4-cre transgenic mouse line expressing cre-recombinase in early 

thymocytes starting at the DN3 stage (Wolfer et al., 2001). Using a Rosa26-Stop-YFP 

reporter line (Srinivas et al., 2001), we confirmed CD4-cre mediated deletion already at 

the DN stage (22% deletion), which then increased to 83% in DP cells, and finally 

reached 99% in CD4SP thymocytes (Fig. 1D). In agreement with the YFP-reporter 

gene activation, the floxed cofilin1 allele was deleted with high efficiency in thymocytes 

of Cof1fl//fl,CD4cre mice (Fig. 1E). In total thymocytes, recombination of the floxed cofilin1 

allele (fl) had occurred with an efficiency of more than 95% () as judged by Southern 

Blot analysis. This analysis also confirmed the specificity of cofilin1 deletion in 

thymocytes, but not in other tissues (Fig. 1E). Concomitantly, cofilin1 protein was 

depleted in Cof1fl//fl,CD4cre total thymocytes by more than 90% as shown by Western blot 

analyses (Fig. 1F).  

Importantly, the deletion of cofilin1 did not result in any compensatory upregulation of 

ADF, cofilin2, or other related F-actin binding proteins, such as for example gelsolin or 

CapG (Fig. 1F). With the depletion of cofilin1, we consequently removed all ADF/cofilin 

activity from DP thymocytes. Actin filament dynamics should therefore be severely 

tuned down. To formally test this assumption, we isolated primary thymocytes from 

Cof1fl/fl,CD4cre mice and measured their F-actin and G-actin levels, using fluorescently 

labeled phalloidin as a sensor for F-actin and fluorescently labeled DNaseI to detect G-

actin. Quantitation by FACS analysis revealed a 2.5-fold increase in F-actin levels 

when compared to control thymocytes (Fig. 2A). The increase in F-actin was paralleled 

by a reduction of the G-actin pool. Quantitation of F/G-actin levels by fluorescence is 

very sensitive, but will only allow to measure relative changes. To obtain an estimate of 

the absolute F-actin and G-actin levels, we biochemically separated the Triton-X100 

insoluble (F-actin) and soluble (G-actin) actin pool and determined their amounts by 

Western blot (Watts and Howard, 1993). In agreement with the FACS data, also the 

biochemical fractionation showed an increase in F-actin and decrease of G-actin in 

cofilin1 depleted thymocytes (Fig. 2B). Considering the absolute actin levels, the 

mutant thymocytes still contained about 60% G-actin. In comparison control 

thymocytes contained about 80% G-actin (Fig. 2B). Although cofilin1 depleted 

thymocytes still had significant G-actin levels, one important question was whether this 

monomeric actin pool would still be polymerisation competent upon cell activation. 
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Therefore, we monitored the actual kinetics of actin polymerisation and 

depolymerisation after stimulation of thymocytes with the chemokine SDF-1α (Fig. 2C). 

With this assay we were able to resolve actin polymerisation within seconds and to 

monitor cycles of F-actin formation over longer periods. Cycling of F-actin levels in 

stimulated cells is a general phenomenon that in fact had been described some time 

ago (McRobbie and Newell, 1983). In our hands, control thymocytes showed an 

oscillatory pattern of F-actin levels, with an initial peak around 5 seconds after 

stimulation, followed by a second slower rise within the next 30 seconds and a 

subsequent return to baseline levels within 1-2 minutes. For cofilin1 depleted 

thymocytes a number of interesting differences were observed: First, thymocytes 

lacking cofilin1 could polymerise actin upon stimulation, and the F-actin peak increased 

within 10 seconds. Second, the initial F-actin increase was significantly exaggerated in 

cofilin1 depleted thymocytes when compared to control thymocytes. And third, the 

increased F-actin levels of Cof1fl/fl,CD4cre thymocytes never returned to baseline, even 

beyond the 5 minutes end point of the experiment (Fig. 2C). These findings suggest 

that cofilin1 function is essential to limit the activity of the actin polymerisation 

machinery. Without cofilin1 activity actin filament dynamics becomes more refractory to 

stimulation.  

Taken together, we developed and validated a genetic model system that allows to 

block actin filament dynamics specifically at the DP stage of thymocyte development in 

vivo. We next focused on our main question how actin dynamics is linked to thymocyte 

development.  

 

Cofilin1 is essential for positive selection in the thymus and the transition of DP 

cells to CD4+ and CD8+ SP cells 

In the thymus, precursor cells pass several checkpoints on the way to functional T cells. 

The critical steps are characterised by the sequential expression of the T cell receptor 

(TCR) associated co-receptors CD4 and CD8. First, immature double negative (DN) 

thymocytes proceed to the double positive (DP) stage, which represents close to 90% 

of thymocytes. In the final differentiation step, DP cells differentiate towards single 

positive cells (SP), which express either CD4 or CD8. Mature T cells can then exit the 

thymus and home to peripheral secondary lymphatic organs.  
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In Cof1fl/fl,CD4cre mice the total number of thymocytes was unchanged (Fig. 3A), 

suggesting that the deletion of cofilin1 did not have any major adverse effect on 

proliferation or survival of thymocytes. However, we observed a severe differentiation 

block from DP cells to SP cells. FACS analysis showed that the thymus of Cof1fl/fl,CD4cre 

mice was practically devoid of CD4SP and CD8SP thymocytes (Fig. 3B). Since DN and 

DP cells were not affected in Cof1fl/fl,CD4cre mice, the differentiation block must occur at 

the transition from DP to SP cells (Fig. 3C). Lineage commitment to CD4SP and 

CD8SP cells occurs at the late stage of positive selection of DP thymocytes that only 

survive if they receive a productive signal through their re-arranged TCR (Swat et al., 

1993; Yamashita et al., 1993). Cells that have been successfully selected, express 

high levels of the T cell receptor -chain (TCRß
high) and the activation marker CD69 

(CD69+). In Cof1fl/fl,CD4cre thymocytes we found a dramatic reduction of the 

TCRß
high/CD69+ subpopulation (Fig. 3D), suggesting that cofilin1 is critical for the 

processes involved in positive selection.  

The lack of SP thymocytes was further illustrated by the anatomy of the thymus from 

Cof1fl/fl,CD4cre mice (Fig. 3E). The area of the cortex was expanded at the expense of 

the medullary compartment, while the overall size of the thymus was unchanged. The 

medullary structures were nearly absent in cofilin1 mutant mice, only small fragmented 

residual islands could be identified (Fig. 3E). The reduction of the medullary 

compartment is in agreement with the loss of CD4SP and CD8SP thymocytes, since 

SP thymocytes were shown to support the maintenance of the medulla as a niche 

(Negishi et al., 1995; Philpott et al., 1992).  

Only mature SP T cells will exit the thymus and home into secondary lymphatic organs. 

However, despite the block in thymocyte development we found a small number of SP 

T cells in lymph nodes, spleen and blood of Cof1fl/fl,CD4cre mice (Fig. 4 A,B). This raised 

the question on the nature of these T cells that reached about 10% of normal T cell 

counts. Were these cofilin1 deleted T cells that had possibly left the thymus? 

Expression analyses clarified that the peripheral T cells in Cof1fl/fl,CD4cre mice in fact 

were not deleted for the cofilin1 gene and expressed cofilin1 protein. This was 

illustrated by Western blot (Fig. 4C), as well as Southern blot analyses of CD4-sorted 

peripheral T cells from Cof1fl/Δ,CD4cre mice (Fig. 4D). The rational to use Cof1fl/Δ,CD4cre 

mice for this experiment was to better illustrate the lack of deletion by the equal signal 

intensities of fl- and  alleles. If complete deletion would have occurred the fl-signal 
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should have disappeared, if partial deletion would have occurred the fl-signal should 

diminish and the  allele increase. The equal ratio of the fl and  alleles indicated that 

basically none of the fl-alleles was converted to the  allele and that practically all the T 

cells found in the periphery had escaped cofilin1 gene deletion (Fig. 4D).  

The presence of functional escaper T cells in the periphery also showed that the 

differentiation block is a cell autonomous phenomenon of mutant thymocytes and not 

caused by alterations in the thymic stroma environment. These data show that T cells 

can still emerge from a morphologically altered thymus as long as they express cofilin1. 

The low abundance of T cells in secondary lymphatic organs of Cof1fl/fl,CD4cre mice (Fig. 

4B) did not affect the B cell representation as shown by CD19-positive cells in lymph 

node as an example (Fig. 4E). One should note that the apparent increase of B cells in 

the FACS plot is owed to the representation of relative numbers of T cells and B cells. 

The absolute numbers of B cells in lymph nodes of mutant and control mice are in fact 

not significantly altered (Suppl. Fig. E). 

 

Thymocyte proliferation and apoptosis are independent of cofilin1  

We next addressed the underlying mechanisms responsible for the differentiation block 

and the severe reduction of T cells in Cof1fl/fl,CD4cre mutants. One trivial explanation 

could simply be a block in thymocyte proliferation and/or increased cell death. 

The total cell counts in the thymus of Cof1fl/fl,CD4cre mutants and control mice were 

identical, as well as the pools of DN and DP thymocytes (see Fig. 3 A,C). This 

suggested, that alterations of the proliferation and apoptosis equilibrium were unlikely 

to account for the block in thymocyte development. Nonetheless, we quantitated 

apoptosis in isolated total thymocytes as well as DP cells, using active caspase 3 

specific antibodies. We did not observe any significant difference between control mice 

and Cof1fl/fl,CD4cre mutant mice (Fig. 5 A,B). In steady state conditions, apoptotic cells in 

the thymus are cleared very rapidly and therefore it might be difficult to detect small 

changes in apoptotic numbers. To uncover a possibly mild phenotype we challenged 

isolated total thymocytes by in vitro culture before measuring apoptosis. Even under 

these conditions, we did not find any increase of apoptosis in cofilin1 depleted 

thymocytes using Annexin V as a marker (Fig. 5B). 

To address the proliferation potential, we cultured total thymocytes in the presence of 

PMA/Ionomycin as growth stimulators. Both, control thymocytes as well as cofilin1 
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depleted thymocytes showed comparable cell expansion in vitro (Fig. 5C). In addition, 

cell cycle analysis ruled out any defect in cytokinesis as indicated by the normal cell 

distribution in G0/G1- and G2/M-phases (Fig. 5D).  

Collectively, these data show that cofilin1 deficiency does not promote apoptosis in 

thymocytes, nor does it affect cell proliferation.  

  

In thymocytes cofilin1 is not required for surface receptor turnover 

One critical parameter in T cell development is the sequential up- and downregulation 

of surface receptors such as CD4 and CD8, or the T cell receptor chains (Guidos et al., 

1990; Malissen and Malissen, 1996). Previously, cofilin1 was shown to control receptor 

trafficking in neuronal cells (Rust et al., 2010), and we therefore hypothesized that 

cofilin1 might similarly be involved in surface receptor turnover in thymocytes. Any 

impairment could contribute to the differentiation block in Cof1fl/fl,CD4cre mutant mice.  

We examined whether cofilin1 contributed to the turnover of CD4 and CD8 on the cell 

surface. First, all surface receptors were stripped from the outer surface of thymocytes 

by protease treatment, followed by a recovery period at 37°C, during which we 

monitored the re-appearance of CD4 and CD8 molecules on the cell surface. In this 

assay Cof1fl/fl,CD4cre thymocytes and control cells, both recovered CD4 and CD8 (Fig. 

5E). Furthermore, the kinetics of CD4 and CD8 receptors trafficking back to the surface 

were comparable as shown in a time course experiment over 14 hours (Fig. 5F). At 

4°C receptor recovery was blocked in control and cofilin1 depleted thymocytes, proving 

that the underlying process was a physiological and active transport mechanism. 

In summary, our data show that thymocytes do not require cofilin1 for CD4/CD8 

receptor trafficking. It is therefore unlikely that CD4/CD8 receptor turnover contributes 

to the block in thymocyte development.  

  

Cofilin1 is controlling cell adhesion and 3-D migration of thymocytes 

Double positive thymocytes mature along a migratory path through the thymus. On the 

way through the cortex and the medulla, thymocytes receive signals via cell-cell 

contacts that are essential for their differentiation. Consequently, cell adhesion is a 

critical parameter in thymocyte development. For example, the interaction of thymocyte 

LFA-1 with epithelial cell ICAM-1 is one important pathway for T cell differentiation 

(Fine and Kruisbeek, 1991; Lub et al., 1997). Chemokines such as SDF-1 and CCL25, 
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both produced by stromal cells, play a pivotal role in integrin mediated thymocyte 

adhesion and development (Norment and Bevan, 2000; Peled et al., 2000; Uehara et 

al., 2002a).  

We therefore tested whether cofilin1 deficiency affects thymocyte adhesion to ICAM-1. 

Without stimulation, as well as in presence of SDF-1 adhesion to ICAM-1 was 

strongly impaired in cofilin1 depleted thymocytes (Fig. 6A). In addition, SDF-1 

stimulation could augment the percentage of adhering control thymocytes, while 

cofilin1 deficient thymocytes did not respond to the chemokine. Similar results were 

obtained when we measured thymocyte spreading on ICAM-1 coated surfaces. 

Spreading goes hand in hand with adhesion and strictly depends on the re-

organisation of the actin cytoskeleton (Brakebusch and Fässler, 2003; Stossel, 1993). 

As seen for adhesion, also spreading was impaired in cofilin1 deficient thymocytes and 

cells did not respond to SDF-1 (Fig. 6B). It is noteworthy that the levels of ICAM-1 

receptors were not changed in cofilin1 deficient thymocytes as shown by FACS 

analysis of LFA-1 subunit chains CD11a and CD18 (Suppl. Fig. A).  

Adhesion and spreading are critical for cell migration. Most cells go through cycles of 

attaching, spreading and leading-edge protrusion, followed by cell rounding and 

pausing before another migration cycle is re-initiated (Friedl et al., 2001). Having 

identified cofilin1 as a parameter for thymocyte spreading and adhesion, we wanted to 

directly address cofilin1 function in thymocyte migration. To this aim we employed two 

conceptually different migration assays, which allowed us to dissect cell motility on 

hard surfaces as well as in softer three-dimensional substrates. A transwell-assay was 

performed to address chemotaxis in surface dependent motility, whereas a collagen 

matrix was used to investigate migration in 3-D. In both assays we used SDF-1 and 

CCL25, the two most abundant chemokines in the thymic cortex, to stimulate migration 

(Wurbel et al., 2000; Zaitseva et al., 1998). 

Unstimulated migration of cofilin1 deficient thymocytes was significantly reduced in the 

transwell-assay (Fig. 6C). Likewise, chemotaxis towards the applied chemokines was 

impaired, despite the fact that cofilin1 depleted thymocytes showed increased 

migration as compared to medium control (Fig. 6C). We again validated that the 

respective chemokine receptors for SDF-1 (CD184/CXCR4) and CCL25 

(CD199/CCR9) were indeed expressed at comparable levels on the surface of 

Cof1fl/fl,CD4cre and control thymocytes (Suppl. Fig. B). These results suggest, that the 
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impairment in cell motility is most likely downstream of signaling pathways, directly at 

the level of cofilin1 mediated actin filament dynamics. This is in good agreement with 

our initial observation on SDF-1 induced F-actin polymerisation (see Fig. 2C). 

The importance of cofilin1 for cell migration was even more evident when we assayed 

migration in a three-dimensional environment. Here, random migration of cofilin1 

depleted thymocytes was strongly impaired and also chemokine stimulated migration 

was severely compromised when compared to control cells (Fig. 6D). Live tracking of 

individual cells revealed that the average velocity of cofilin1 deficient thymocytes was 

significantly lower when compared to control cells (Fig. 6E). This is visually illustrated 

in a track plot were the path of individual Cof1fl/fl,CD4cre cells is marked in red in 

comparison to control thymocytes in black (Fig. 6F). To refine our analysis we 

determined the speed distribution of thymocytes over a period of 6 hours by binning of 

cells that moved at a certain speed. This analysis enables to appreciate what 

proportion of cells is migrating at a given speed (Fig. 6G). Our results illustrated that 

cofilin1 deficient thymocytes prefer to crawl at low speed and spend comparably little 

time migrating at higher velocity. Cof1fl/fl,CD4cre thymocytes preferentially moved in the 

low velocity range of 0.5-1.5 m/min, while control thymocytes rather migrated in the 

high-speed range. Interestingly, the maximum velocity mutant thymocytes could reach 

was similar to control cells (Fig. 6H, left panel). Second, the persistence of directed 

migration was comparable for Cof1fl/fl,CD4cre and control cells, meaning that cofilin1 

deficient thymocytes did not meander more than control cells (Fig. 6H, middle panel). 

Conversely, cofilin1 depleted thymocytes showed significantly prolonged resting 

intervals between the migration cycles (Fig. 6H, right panel). Generally speaking, 

mutant thymocytes were pausing longer on their migratory path, and once they were 

moving they migrated slower than control thymocytes. It is important to note that also 

control thymocytes use a ‘stop-and-go’ fashion, indicating the importance of this mode 

of migration in a physiological context and possibly thymocyte development.  

In conclusion, our results provide new insights into the role of cofilin1 in 3-D cell 

migration. Cofilin1 is controlling adhesion, the pattern of migration cycles, and the 

average velocity of thymocytes. Together, these very specific alterations mount in the 

failure of thymocyte development in vivo.  
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Thymocyte differentiation can be uncoupled from cofilin1 dependent migration 

in vitro 

Our results strongly argue for a cofilin1 dependent ‘motility pattern’ as the determining 

parameter for thymocyte differentiation in vivo. One prediction would then be that all 

cell inherent differentiation parameters, such as signaling mechanisms or gene 

expression patterns should function independently of cofilin1. If this was true, we 

should be able to circumvent the migration dependent differentiation block by providing 

the relevant external signals in vitro. This should then allow cofilin1 depleted DP 

thymocytes to differentiate towards SP thymocytes. 

To address this final hypothesis and to test the uncoupling of differentiation from 

migration, we set up an ex vivo differentiation experiment. It was shown that incubation 

of DP thymocytes with a mix of TCRß/CD2 antibodies can mimic positive selection and 

push thymocyte differentiation predominantly towards CD4+ single positive cells (Cibotti 

et al., 1997). Following this strategy, we stimulated thymocytes for 32 hours in culture 

and tested the conversion of DP towards SP cells. In our hands, more than 50% of 

control DP thymocytes differentiated into CD4SP cells (Fig. 7A). Similarly, more than 

50% of Cof1fl/fl,CD4cre thymocytes converted to CD4SP cells (Fig. 7B). The same result 

was obtained when in vitro differentiation was triggered by increase of intracellular 

calcium via PMA/Ionomycin treatment (data not shown) (Mitnacht et al., 1998; Ohoka 

et al., 1996). These data demonstrated that cofilin1 deficient DP thymocytes have the 

full capacity to differentiate into SP cells.  

In summary, our data demonstrate that cofilin1 is central to regulate a ‘stop-and-go’ 

mode of thymocyte migration and adhesion, which in a physiological context appears 

to be essential for providing environmental cues and cell interactions necessary for 

thymocyte differentiation. 

 

Discussion 

Imaging experiments performed in the thymus suggested that thymocyte migration is 

an important parameter for differentiation. For example, thymocytes depend on 

environmental cues provided by cell-cell contacts with epithelial stroma cells 

(Takahama, 2006), and during positive selection thymocytes migrate with defined 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



pausing cycles that allow interaction with MHC-expressing epithelial cells (Sebzda et 

al., 1999). 

However, it has remained unclear, how these specific aspects of thymocyte motility are 

tuned on the level of the actin cytoskeleton. Signaling pathways controlling cytoskeletal 

dynamics have been identified, and mutations of WASP (Zhang et al., 2002), Rac-1 

(Gomez et al., 2001), and other small GTPase pathways have suggested a link to actin 

(Costello et al., 2000). It is however difficult to unequivocally link these data to actin 

dynamics, as all of the mentioned targets entertain a crosstalk with numerous other 

cellular processes that might very well influence thymocyte differentiation, independent 

of actin regulation.  

We therefore developed strategies to study the direct link of actin filament dynamics to 

thymocyte migration and differentiation. It was our objective to down-regulate actin 

filament turnover specifically in thymocytes, without interfering with any upstream 

signaling pathways or any other second cell type. Key to this strategy was to blunt all 

actin filament depolymerising activity by deleting cofilin1. 

Cofilin1 is a member of a family of actin depolymerising factors, and the only 

ADF/cofilin protein expressed in thymocytes. Previous work from our group has 

identified cofilin1 as the central actin filament severing activity in vivo (Flynn et al., 

2012; Jönsson et al., 2012). Related actin filament severing proteins such as gelsolin 

are not relevant for the here presented study, since gelsolin is expressed at very low 

levels, and previous work had excluded any important role in T cell development (Witke 

et al., 1995).  

Cell type specific deletion of cofilin1 therefore provided an excellent tool to address 

actin filament dynamics in thymocyte development. We generated a conditional 

Cof1fl/fl,CD4cre mouse model, in which cofilin1 gene deletion occurred with high efficiency 

in early DP T cell precursors in the thymus. It is an intrinsic property to the 

hematopoietic system that even high cre-recombinase expression rates of more than 

99% will allow a small number of cells to escape recombination and hence to maintain 

expression of the target gene. In this study, we indeed observed a small percentage of 

‘escaper cells’, which expressed cofilin1 and developed normally into mature CD4 and 

CD8 T cells. This escaper fraction in fact served as a convenient control for supporting 

the cell autonomous function of cofilin1 in thymocytes (see below).   

Upon deletion of cofilin1, neither ADF nor cofilin2 expression was found to compensate 

its absence in thymocytes. In agreement with the overall loss of severing activity, we 
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observed a pronounced increase in the F-actin content in thymocytes. Interestingly, the 

mutant thymocytes were still able to trigger actin polymerisation upon stimulation, 

suggesting that the mechanisms of actin nucleation and polymerisation can work 

independently of cofilin1, as long as a sufficient pool of polymerisation competent G-

actin is available. In this context it is important to note that G-actin pools can be very 

different, depending on the cell type. For example, classical adherent cells such as 

fibroblasts have roughly 50% F-actin and 50% G-actin (Phillips et al., 1980). In resting 

thymocytes on the other hand, we found that only 20% of total actin is in the 

filamentous form, leaving 80% as monomeric G-actin pool. Despite the F-actin 

increase in cofilin1 deficient thymocytes, this still leaves about 60% of cellular actin to 

the G-actin pool. More important than steady-state levels of F/G-actin were the 

dynamic changes of F-actin, namely the actin polymerisation and depolymerisation 

kinetics. When cofilin1 was deleted, stimulation of actin polymerisation in thymocytes 

resulted in overshooting F-actin levels, which did not return to baseline levels during 

the timeframe of the experiment. Therefore, one major function of cofilin1 appears to 

be to counteract the polymerisation burst in a feedback loop, which ultimately allows an 

oscillating mode of actin polymerisation and depolymerisation. It is important to note 

that in our experiments we followed global actin polymerisation in the cell.  

What are oscillatory F-actin fluctuations good for, and what is their possible role in a 

physiological context? Thymocytes have to migrate through the thymic epithelial tissue 

in order to sense local chemokines and interact with stromal signals to differentiate into 

mature T lymphocytes (Savino et al., 2004). Two photon studies on thymic tissue have 

shown that thymocytes exhibit mainly random walking through the cortex until they 

undergo selection, which appears to trigger a rapid directed migration towards the 

medulla (Witt et al., 2005). This implies that a sophisticated modulation of migration 

patterns is a major parameter of thymocyte differentiation. 

With this in mind we can picture cofilin1 function in the thymus. Without cofilin1 DP 

thymocytes are developmentally arrested and do not differentiate into CD4SP and 

CD8SP thymocytes. Our data show that this phenomenon is associated with the lack of 

F-actin oscillations, that in return cause an unusual ‘motility pattern’ of cofilin1 deficient 

thymocytes. In a 3-D matrix this is illustrated by the prolonged pausing and lower 

migratory speed of Cof1fl/fl,CD4cre thymocytes. In addition, integrin mediated cell 

adhesion and spreading of thymocytes is dependent on cofilin1. The combined 
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migration and adhesion defects we observed ex vivo, however become critical in vivo 

in the tissue context. Apparently, cofilin1 is required for stirring thymocytes through the 

thymus and to allow cell-cell contacts to occur in a coordinated fashion. All our data 

presented here are in good agreement with this hypothesis. Cofilin1 depleted 

thymocytes miss these cues, but can be forced to differentiate into SP thymocytes 

simply by activating the respective signaling pathways in vitro. This demonstrated that 

cofilin1 deficient thymocytes still have the intrinsic capacity to differentiate once the 

appropriate signals are provided.  

Our data also excluded a number of rather trivial explanations for the observed 

differentiation block. Previously described functions of cofilin1 in apoptosis (Chua et al., 

2003; Wabnitz et al., 2010), cell proliferation (Eibert et al., 2004; Ohashi, 2015), and 

receptor trafficking (Salvarezza et al., 2009; von Blume et al., 2011) seem to be rather 

cell specific functions, but not relevant in thymocyte development. In addition, it is 

important to note that the function of cofilin1 is clearly cell autonomous in thymocytes. 

As mentioned, our CD4-cre mouse model allows a small percentage of thymocytes to 

escape deletion. These escaper cells express cofilin1, developed into mature CD4SP 

or CD8SP cells, and populated peripheral lymphatic tissues. This finding excludes 

epiphenomena due to tissue architecture or any other secondary effects. In addition, 

unpublished data from our group on the deletion of cofilin1 in mTECs using a K14-cre 

driver line, showed no impairment in thymocyte development (Gurniak&Witke, 

unpublished observation).   

In Cof1fl/fl,CD4cre mutant mice the block of , thymocyte differentiation had a number of 

physiological consequences, such as the severe lack of peripheral T cells and the 

relative increase of B cells in secondary lymphatic compartments. Alterations in the B 

cell compartments had been observed before (Molina et al., 1992; Negishi et al., 1995), 

however in our case of Cof1fl/fl,CD4cre mutant mice the absolute number of B cells in 

secondary lymphatic tissues was unchanged (Suppl. Fig. E).  

In this context we should note that heterozygous cofilin1 mutants (Cof1wt/fl,CD4cre), 

expressing 50% of normal cofilin1 protein levels showed no impairment in T cell 

development or alterations in any T cell subset we have analysed. 

Control of cofilin1 activity is a powerful mean to regulate T cell differentiation. In the 

physiological context, cofilin1 is regulated by different mechanisms (Bernstein and 
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Bamburg, 2010; Van Troys et al., 2008). One control mechanism is phosphorylation of 

Ser3, which is shutting off activity while dephosphorylation activates cofilin1 (Nagaoka 

et al., 1996). Studies have shown dephosphorylation of cofilin1 after T cell stimulation 

(Samstag et al., 1992), however whether phosphorylation is relevant in thymocytes 

during the initial F-actin burst has not been addressed yet. In a recent study it was 

shown that expression of a GFP-cofilin1 variant in DN cells that cannot be 

phosphorylated is blocking T cell development at the DN stage (Seeland et al., 2018). 

In this model the GFP-cofilin1 variant apparently has a dominant effect in DN cells, 

leading to the loss of 99% of thymocytes, while in our knockout model normal numbers 

of DP cells were observed. In addition, the Seeland et al. model showed that , T cells 

were present in normal numbers. In contrast, in our knockout model we observed an 

upregulation of , T cell numbers as an intriguing epiphenomenon since in these , T 

cells the CD4-cre mediated deletion occurs at only very low levels (Suppl. Fig. C,D).   

Our results on cofilin1 function in thymocyte differentiation is distinct from the 

numerous studies on the role of cofilin1 in mature T cells or other cell types. Our 

approach does indeed not allow to draw any conclusions on coflin1 function in mature 

T cells upon stimulation and cell activity (Eibert et al., 2004; Lee et al., 2000). 

In conclusion, we propose a new function of cofilin1 in regulating the coordinated 

migration and adhesion of thymocytes during positive selection and differentiation into 

single positive T cells.  

 

Material and Methods 

Mouse lines. The generation of the Cofilin1 conditional mouse line (Cof1fl/fl) was 

described by Gurniak et al., 2005 and the respective alleles are illustrated in Fig. 1C. 

Cof1fl/lfl mice were crossed to a transgenic mouse line which expresses Cre 

recombinase under the CD4 promoter (Wolfer et al., 2001). Animals homozygous for 

the Cofilin1 flox-allele and heterozygous for the CD4-cre allele (Cof1fl/fl,CD4cre) were 

used for experiments. Unless specified differently, control mice were either littermates 

homozygous for the cofilin1 flox-allele (Cof1fl/fl) or mice wildtype for cofilin1 and 

heterozygous for CD4-cre (Cof1wt/wt,CD4cre). The Rosa26-Stop-YFP reporter line carries 

a floxed ‘Stop cassette’ in the ubiquitously expressed Rosa26 locus (Srinivas et al., 

2001). Upon Cre-mediated deletion of the ‘Stop cassette’ YFP expression can be 
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observed. Unless specified otherwise, the n given in the figure legends refers to the 

biological n, meaning the number of animals used in independent experiments. 

Genotyping was performed by PCR using gene and mutation specific primers. Animal 

housing, breeding, and procedures were carried out according to EU regulations and 

permission granted by local authorities in Italy and Germany (‘Decreto n. 19/2005-B’ 

and AZ 81-02.04.2019.A233).  

Cell preparation and sorting. Tissues were obtained from adult 6 weeks to 3 months 

old animals and single cell suspensions were prepared from thymus in RPMI 1640 

medium without phenol red. For Southern- and Western-blot analyses of peripheral T 

cells CD4+ cells from spleen were sorted using magnetic beads according to the 

manufacturer’s protocol (Miltenyi Biotec). As judged by FACS staining using CD4-

PerCP and CD8-FITC the sorted CD4+ cell populations were more than 90% pure. 

Flow cytometry. Up to four-color FACS staining was performed as described by 

Gurniak and Witke, 2007. Briefly, single cell suspensions were filtered (30μm Filcons) 

and stained with the corresponding antibodies in FACS buffer (0.5% FCS, 2mM EDTA 

in PBS) for 15 to 30min on ice, washed two times with FACS buffer and data were 

acquired on an Accuri C6 (Becton Dickinson (BD)). Actin measurements: To determine 

G- and F-actin levels by DNaseI and phalloidin staining, cells were fixed in 4% 

PFA/PBS for 10min washed with PBS and permeabilized for 15min with 0.1% Triton X-

100/PBS, both incubations at RT. Apoptosis staining: For apoptotic and dead cells the 

Annexin V-FITC Apoptosis Detection Kit (BD) was used in combination with propidium 

iodide, staining for CD4-PerCP and CD8-APC was performed simultaneously. For 

intracellular staining of active caspase 3, live thymocytes were first stained for CD4 and 

CD8, then fixed with 4% PFA/PBS, permeabilized by 0.1% TritonX-100/PBS, and 

stained with Alexa-488 conjugated anti-active caspase 3 (Cell Signaling Technology). 

Incubation steps with fluorophores were carried out on ice, and reagents were diluted 

in FACS buffer. Fluorescent labels: Antibodies from eBioscience: FITC conjugated anti-

CD4, anti-CD8, anti-TCRß; PerCPefluor710® conjugated anti-CD4; allophycocyanin (APC) 

conjugated anti-TCRß, anti-CD8, anti-CD184, anti-CD197, anti-CD199. Reagents from 

BD: FITC conjugated anti-CD8; Phycoerythrin (PE) conjugated anti-CD19, anti-CD69 

and anti-TCRß; PerCP conjugated anti-CD19 and anti-CD8; APC conjugated anti-

CD19; 7-aminoactinomycin D (7-AAD). Reagents from Molecular Probes™: Alexa-680 

conjugated phalloidin and Alexa-488 conjugated DNaseI. 
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Thymocyte culture and treatments.  For in vitro differentiation of thymocytes as 

described by (Cibotti et al., 1997), 3cm polystyrene Petri dishes (Greiner Bio-One) 

were coated for 3h at room temperature with TCRß and CD2 antibodies (eBioscience) 

at a concentration of 5µg/ml in 50mM Tris/HCl pH 9.5. 1 x 107 thymocytes were 

cultured at 37°C, 5% CO2 in 1ml RPMI 1640 medium containing 1.76µM 2-

mercaptoethanol and 10% heat inactivated FCS, which had been depleted of 

endogenous steroids by charcoal and dextran. After 18h cells were washed and 

transferred for recovery culture onto uncoated petri dishes for additional 16h, before 

FACS analysis. Pronase treatment: The CD4/CD8 receptor re-expression assay was 

essentially performed as described in (Ohoka et al., 1996; Punt et al., 1996). Briefly, 

thymocytes were washed three times with PBS and 2 x 106 cells/ml were treated two 

times with 0.02% Pronase (Calbiochem) and 100µg/ml DNaseI (Promega) diluted in 

PBS for 15min at 37°C. To quench the reaction 10% FCS was added, cells were 

washed tree times with RPMI 1640 medium. For receptor recovery cells were 

incubated in RPMI 1640 medium for 1h, 6h and 14h at 37°C, 5% CO2 or at 4°C, before 

staining and FACS analysis.  

Cell cycle analysis and proliferation assay. The cell cycle kit by BD was used to 

analyse the DNA content of total thymocytes. After fixation, RNase treatment and 

propidium iodide staining single cells were acquired by flow cytometry. To determine 

the proliferation rate of total thymocytes 5x104 cells were seeded into 96 well plates 

and incubated for 0, 24, 48 and 72 hours with or without 10ng/ml PMA and 400nM 

Ionomycin in RPMI 1640 medium at 37°C, 5% CO2. After centrifugation and removal of 

medium plates were frozen at -80°C. Cell number was determined by staining of DNA 

with CyquantTM (Thermo Fisher Scientific) and fluorometric analysis. 

Adhesion, Spreading and migration assays. The adhesion assay on ICAM-1 was 

performed as outlined by Quast et al., 2009 and Boehm et al., 2003. For efficient 

coating of ICAM-1 to the plastic surface a precoating of human IgG FCγ monoclonal 

antibody (Dianova) followed by binding of recombinant mouse ICAM-1-FC chimera 

(R&D Systems) was used. As a control, we kept an ICAM-1 uncoated ring area on the 

plastic surface. Thymocytes were stimulated with 400ng/ml SDF-1α (PeproTech) for 

60min and cells were then allowed to attach for 1h. Unbound cells were rinsed off with 

HBSS until the outer uncoated ring area was devoid of cells. Adherent cells were then 

fixed with 4% PFA/PBS for 10min and counted manually in seven random fields of view 
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using a 10x phase contrast objective (Nikon) with a fully automated inverted 

microscope (Keyence). To determine spreading the number of extended cells were 

counted from phase contrast images. Statistics were performed by a two-tailed 

independent T-test and with SigmaPlot® 12 (Systat Software, Inc.) using one-way 

Anova. 

Transwell assay: Two dimensional migration of thymocytes was measured by transwell 

migration using inserts with a pore size of 5µm (Corning Costar) as described by Phee 

et al., 2010 and Shiow et al., 2008. Single cell suspensions were preincubated for 1h in 

migration medium (10mM HEPES pH 7.2, 100U/ml penicillin/streptomycin, 0.5% (v/v) 

BSA in RPMI 1640) at 37°C, 5% CO2, subsequently 3 x 105 cells were transferred to 

the top chamber of the respective transwell plates. Assays were set up in duplicates; 

the bottom chamber contained plain migration medium or one of the chemokines either 

SDF-1α (400ng/ml) or CCL25 (2.5μg/ml) (both from PeproTech) diluted in migration 

medium. After an incubation time of 5h at 37°C, 5% CO2 cells were collected from the 

bottom well and stained with antibodies directed against CD4-PerCP, CD8-PE and 

TCRß-APC and analysed by flow cytometry. The receptors for the chemokines SDF-1α 

and CCL25 were stained with the antibodies CD184-APC and CD199-APC, 

respectively. 

3D migration in collagen gel: For the analysis of thymocyte motility in 3D, migration 

assays were performed in polymerised rat tail collagen-I (Gibco® INVITROGEN) 

according to the protocol of Friedl et al., 1998 and Quast et al., 2009. On ice collagen-I 

was titrated with 0.1N NaOH and mixed with 10x MEM (Gibco® INVITROGEN) and the 

chemokines SDF-1α (400ng/ml) or CCL25 (2.5μg/ml) (PeproTech). 3 x 105 thymocytes 

in migration medium were carefully mixed with 100µl collagen solution, resulting in a 

final collagen-I concentration of 3mg/ml. Collagen-thymocyte mixtures were placed in 

custom-built chemotaxis chambers and incubated for 60min at 37°C, 5% CO2 to allow 

collagen polymerisation and cell recovery. Time-lapse imaging was conducted using a 

fully automated inverted microscope (Keyence) equipped with a 10x phase-contrast 

objective (Nikon) and a climate chamber (37°C; 5% CO2). Time-lapse images were 

recorded for 8h at 90s intervals; control and mutant thymocytes were simultaneously 

acquired at different coordinates. The ImageJ 1.47q software (NIH) and the ‘Manual 

Tracking’ plug-in (NIH) were used to track cell paths. The ‘Chemotaxis and Migration 

Tool’ Version 1.01 plug-in (ibidi Integrated BioDiagnostics) were employed for plotting 
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cell tracks and for the measurements of velocity and distance. Movies were processed 

using ImageJ 1.47q. Statistics were performed by SigmaPlot® 12 (Systat Software, 

Inc.) by Mann-Whitney test, and by a two tailed independent T-test. 

Histology. Hematoxylin/Eosin (H&E) staining was carried out on 8µm cryo sections; 

after fixation with 4% PFA/PBS slides were incubated in 0.05% Eosin (Sigma-Aldrich) 

and 20% Hematoxylin (Merck Millipore). Area measurements of thymic regions were 

performed manually on H&E stained sections using the area measurement plug-in of 

the Keyence BZ-II analyser software (version 1.41). 

Western blot analysis.  Total protein lysates were prepared from single cell 

suspensions boiled in SDS sample buffer (22mM Tris/HCl, pH 6.8, 4% glycerol, 0.8% 

SDS, 1.6% 2-mercaptoethanol, bromophenol blue). The samples were separated by 

SDS-PAGE, transferred to Immobilon-P membrane (Merck Millipore) and probed with 

antibodies. Signals were developed using ECL and recorded digitally on a LAS4000 

(General Electric). Equal loading was verified by Coomassie staining and GAPDH as 

internal standard. Antibodies used: mouse anti-GAPDH (Merck); rabbit anti-cofilin1, 

rabbit anti-cofilin2, mouse anti-ADF (Gurniak et al., 2014); rabbit anti-gelsolin (Witke et 

al., 1995), rabbit anti-CapG (Witke et al., 2001), anti-actin (MP Biomedicals), 

horseradish peroxidase conjugated anti-mouse, anti-rabbit and anti-rat IgG (Jackson 

Immuno Research).  

Southern blotting. CD4-cre mediated deletion of the floxed Cofilin1 alleles were 

analysed by PCR and Southern blot as described by Gurniak et al., 2005 using 

genomic DNA isolated from single cell suspensions and tail biopsies. 
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Figures 

 

 

 

Figure 1: Thymocyte specific deletion of cofilin1.  

(A) Western blot for ADF/cofilin family members in thymus and control tissues/cells. 

Cofilin1, cofilin2 and ADF were detected by isoform specific antibodies in total protein 

lysates from mouse lymph node, thymus, and Jurkat T cells. Brain and uterus are 

shown as positive controls for the antibodies. Note that lymphatic tissues and the 

Jurkat T cell line express only cofilin1 protein, but no cofilin2 and ADF. (B) Western 

blot of CD4- and CD8-sorted mouse thymocytes. Single cell suspension from thymus 

was sorted for CD4/CD8 double negative (DN), CD4/CD8 double positive (DP), CD4 

single positive (CD4SP) and CD8 single positive (CD8SP) thymocytes. Lysates from 

equal cell numbers were loaded and probed for cofilin1 and actin, and GAPDH as 
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control. Note that DN cells express very low levels of cofilin1, and that DP cells contain 

the smallest amount of actin. (C) Cartoon of the wildtype (Cof1wt), floxed conditional 

(Cof1fl) and deleted (Cof1Δ) cofilin1 alleles. CD4-cre mediated recombination will delete 

exon2 in thymocytes and generate the knock-out allele (Cof1Δ); exons, loxP sites, 

diagnostic EcoRI sites and Southern blot probe are indicated. (D) Developmental 

control of CD4-cre mediated deletion in thymocyte subpopulations using a Rosa26-

Stop-YFPCD4cre reporter line. The vertical line in the histogram plots separates negative 

cells (left) and recombined, percent of YFP-positive cells (right). CD4-cre activity is 

already detectable at the DN stage, recombination increases at the DP stage, in 

CD4SP, and CD8SP cells. (E) Southern blot of control (Cof1wt/fl) and Cof1fl/fl,CD4cre 

mouse DNA after EcoRI digestion shows efficient recombination and gene deletion () 

in Cof1fl/fl,CD4cre thymocytes, but no recombination in tail DNA used as controls. (F) 

Western blot analyses of cofilin1 protein depletion in total Cof1fl/fl,CD4cre thymocytes. 

Equal amounts of lysates from control (ctrl.) and mutant (Cof1fl/fl,CD4cre) thymocytes, 

brain and uterus were loaded and probed with antibodies against cofilin1, cofilin2, ADF, 

gelsolin, CapG and GAPDH. Cofilin1 protein is strongly reduced in Cof1fl/fl,CD4cre 

thymocytes. Brain and uterus serve as positive controls for the antibodies. Experiments 

were repeated at least 3 times. 
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Figure 2: Actin filament dynamics in cofilin1 depleted thymocytes. 

(A) Quantification of relative F- and G-actin levels in Cof1fl/fl,CD4cre thymocytes with 

respect to control thymocytes (ctrl.) using phalloidin/DNaseI staining and FACS 

analysis (n=7, standard deviations are shown with **0.001<P<0.01, unpaired two-tailed 

Students t-Test). In cofilin1 depleted thymocytes, F-actin was significantly increased 

and G-actin decreased. (B) Absolute amounts of Triton insoluble F- and Triton soluble 

G-actin were determined by high speed sedimentation and subsequent western blot 

analyses of control (n=4) and Cof1fl/fl,CD4cre (n=3) thymocytes. Cofilin1 depleted 

thymocytes showed increased F-actin (pellet) and decreased G-actin (spn) levels 

(standard deviations with *0.01<P<0.05; unpaired two-tailed Students t-Test). (C) F-

actin dynamics in SDF-1α stimulated total thymocytes. F-actin was monitored by 

phalloidin staining and FACS analysis at the indicated time points after stimulation. The 

control is shown as solid line, cofilin1 depleted cells as dashed line. Values were 

normalized to unstimulated cells. Note that the data represent biological and not 

technical replicas (n=3 Cof1fl/fl,CD4cre and n=4 control mice, standard deviations are 

shown with *0.01<P<0.05; **0.001<P<0.01, unpaired two-tailed Students t-Test). 
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Figure 3: Single positive thymocytes were lacking in Cof1fl/fl,CD4cre mutant mice.  

(A) The total number of thymocytes was comparable in control (ctrl.) and Cof1fl/fl,CD4cre 

mice (n=5). (B) FACS analysis of total control (ctrl.) and Cof1fl/fl,CD4cre thymocytes for 

CD4 and CD8, showing the differentiation block from DP cells to SP cells. CD4 and 

CD8 single positive thymocytes were decreased in Cof1fl/fl,CD4cre mice. Percentages of 

each cell population are given in the respective quadrants of the FACS plots. (C) 

Statistical analysis of thymocyte subpopulations. On average the number of DN and 

DP thymocytes were not altered in Cof1fl/fl,CD4cre mice, while CD4SP and CD8SP cells 

were severely reduced when compared to control mice (n=5). (D) Expression of TCRß 

receptor and CD69 in total thymocytes from control (dashed line) and Cof1fl/fl,CD4cre 

mice (solid lines). Histogram of FACS analysis is shown for TCRß
high and CD69+ 

thymocytes (left panel). Shaded curves represent unstained cells. Note that the 
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TCRß
high/CD69+ population is severely diminished in Cof1fl/fl,CD4cre mice. The bar chart 

(right panel) shows statistical analysis of TCRß
highCD69+ cells in the DP gated 

subpopulation (n=7). (E) The thymic medulla (white dotted lines) was reduced in adult 

Cof1fl/fl,CD4cre mice as shown by H&E staining of sections (left panel). Quantitation of the 

medullary area (right panel), relative to total thymus size (n=8). Statistical analysis: All 

histograms show standard deviations with ns0.05<P; *0.01<P<0.05; **0.001<P<0.01; 

***P<0.001; unpaired two-tailed Students t-Test. 
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Figure 4: Thymocytes which escaped cofilin1 deletion differentiate into mature 

peripheral T cells.   

(A) FACS analysis of lymph node cells showed the presence of CD4 and CD8 single 

positive T cells in the periphery of Cof1fl/fl,CD4cre mice. (B) Quantitation of peripheral T 

cells (lymph node, spleen, blood) with respect to total lymphocytes in control (ctrl.) and 

Cof1fl/fl,CD4cre mice (n=5, standard deviations are shown with ***P<0.001; unpaired two-

tailed Students t-Test). (C) Western blot of CD4 sorted T cells from spleen confirmed 

normal expression levels of cofilin1 protein in peripheral T cells. Equal numbers of CD4 

sorted cells from control (ctrl.) and Cof1fl/Δ,CD4cre mice were loaded and the blot was 

probed with a cofilin1 specific antibody. (D) Southern blot analysis of genomic DNA 

from CD4 sorted T cells from Cof1fl/Δ,CD4cre mice. Note that Cof1fl/Δ,CD4cre mice are 

shown to directly illustrate the ratio of escaper cells in the periphery. The equal 

intensity of the fl and  alleles indicate that basically none of the fl-alleles was 

converted to the  allele and that the T cells found in the periphery had escaped 

cofilin1 gene deletion. (E) FACS analysis of B and T cell ratio in lymph nodes using 

CD19 as marker for B cells, and TCRß as marker for T cells (n=5). 
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Figure 5: Apoptosis, cell proliferation and receptor transport in thymocytes is 

cofilin1 independent.  

(A) Intracellular staining for active caspase 3 in total thymocytes and DP thymocytes. 

FACS analysis of control (ctrl.) and Cof1fl/fl,CD4cre thymocytes showed comparable 

percentages of apoptotic cells (n=3; standard deviation is shown; nsp<0,5; unpaired 

two-tailed Students t-Test). (B) DP thymocytes kept in culture for 0h and 4h were 

analysed by FACS for the percentages of Annexin V positive cells (n=5; standard error 

is shown; nsp<0,5; unpaired two-tailed Students t-Test). Note that prolonged culture 
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conditions increase the number of apoptotic cells equally in controls and Cof1fl/fl,CD4cre 

thymocytes. (C) Proliferation of total thymocytes after PMA/Ionomycin stimulation 

(+PMA/I) and without stimulation (-PMA/I). Under both conditions control thymocytes 

(black lines) and Cof1fl/fl,CD4cre thymocytes (grey lines) showed comparable expansion 

(n=8; standard error is shown; nsp<0,5; unpaired two-tailed Students t-Test). (D) Cell 

cycle analysis of total thymocytes. DNA content was quantified by FACS analysis after 

staining cells with propidium iodide. The percentages of cells at different cell cycle 

stages was similar in control (ctrl.) and Cof1fl/fl,CD4cre thymocytes. (E) CD4 and CD8 

surface expression on thymocytes was determined by FACS analysis before 

(untreated) and 14h after Pronase treatment either at 4°C or 37°C, respectively. 

Recovery of CD4/CD8 expression is shown in the upper right quadrant, and 

comparable at 37°C in control and Cof1fl/fl,CD4cre thymocytes. (F) Kinetics of CD4/CD8 

receptor recovery from 0 to 14h after Pronase treatment in control (ctrl., black line) and 

Cof1fl/fl,CD4cre thymocytes (grey line) (n=5, diagram displays standard deviations; ns 

0,05<P; unpaired two-tailed Students t-Test). 
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Figure 6: Adhesion and migration were impaired in Cof1fl/fl,CD4cre thymocytes.  

(A) Adhesion and (B) spreading of control (ctrl.) and Cof1fl/fl,CD4cre thymocytes to ICAM-

1 coated plates under resting conditions (media) or after SDF-1α stimulation. Adhesion 

and spreading were impaired in cofilin1 depleted thymocytes. (n=4; diagrams display 

standard error with **0.001<P<0.01;***P<0.001; unpaired two-tailed Students t-Test). 

(C) Transwell migration of thymocytes from control (ctrl.) and Cof1fl/fl,CD4cre mice in the 

absence (media) or presence of SDF-1α or CCL25 in the lower compartment. 

Percentages of cells that migrated to the lower chamber are shown (n=6). (D) 

Migration of control (ctrl.) and Cof1fl/fl,CD4cre thymocytes in a collagen gel either 

unstimulated (media) or stimulated by SDF-1α or CCL25. Migrating cells were 

analysed by time-lapse microscopy over 6h. (n=4). (E) Migration speed of control (ctrl.) 

and Cof1fl/fl,CD4cre thymocytes in collagen gel either unstimulated (media) or stimulated 

by SDF-1α or CCL25. Data are presented as whisker plots. Whiskers comprise 95% of 

data, dots indicate outliers. On average more than 120 cells were analysed per 

genotype and stimulation condition from 4 independent experiments. Significance was 
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calculated with the non-parametric Mann-Whitney Rank Sum test, normality of data 

was tested by Shapiro-Wilk test. (F) Random migration path of SDF1α stimulated 

control (black) and Cof1fl/fl,CD4cre (red) thymocytes in collagen. (G) Binning analysis of 

migration speed during a 6 hour period. Percent of time is shown which individual cells 

spent traveling at a given velocity within this period. (H) Maximal migration speed of 

control (ctrl.) and Cof1fl/fl,CD4cre thymocytes was comparable (left panel). The 

directionality index of SDF-1α stimulated migration in collagen gel was similar for 

control (ctrl.) and Cof1fl/fl,CD4cre thymocytes (middle panel). Proportion of resting periods 

in Cof1fl/fl,CD4cre thymocytes is significantly increased (right panel) (Statistics: n=144 ctrl. 

cells, n=182 Cof1fl/fl,CD4cre cells from 4 animals per genotype. All diagrams display 

standard deviations with ns0.05<P; *0.01<P<0.05;**0.001<P<0.01;***P<0.001; unpaired 

two-tailed Students t-Test). 
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Figure 7: Cofilin1 deficient thymocytes differentiate in vitro.  

(A, B) Control (ctrl.) and Cof1fl/fl,CD4cre thymocytes were cultured on TCRß and CD2 

coated dishes and subsequently analysed by FACS. After 32h of culture both 

genotypes showed efficient differentiation of CD4/CD8 double positive thymocytes 

towards CD4 single positive cells (upper left quadrant). Percentages of cells in each 

quadrant are shown (n=6).  
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Figure S1 
(A) Expression of extracellular ICAM-1 receptor chains CD11a and CD18 was 

comparable in DP thymocytes from control (ctrl.) and Cof1fl/fl,CD4cre mice.  (B) 

Expression levels of chemokine receptors CD184 (CXCR4) for SDF-1a, and CD199 

(CCR9) for CCL25 were comparable in DP thymocytes from control (ctrl.) and Cof1fl/

fl,CD4cre mice. Analyses were performed by FACS. Grey peaks represent unstained cells 

(n=5). (C) Thymocytes were stained for g,d-chains and shown as percent of a,b DN 

cells. In Cof1fl/fl,CD4cre mice 20,1% of DN cells were g,d positive, while in controls (ctrl.) 

only 6,6% g,d positive cells were found. (D) In a Rosa26-Stop-YFPCD4cre reporter mice, 

only 4,5% of of g,d cells were YFP positive, indicating that the CD4-cre transgene is 

only marginally expressed in g,d cells. Consequently the increased g,d cell number 

observed in (C) is due to a non-cell autonomous epiphenomenon. (E) The absolute 

numbers of CD19 positive B cells and CD4 positive T cells per organ were determined 

in lymph nodes of control (ctrl.) and Cof1fl/fl,CD4cre mice. Note that the absolute number 

of T cells, was reduced, while the absolute number of B cells was comparable in 

controls and mutants (Statistics: n=3, all diagrams display standard errors with 
ns0.05<P; *0.01<P<0.05; unpaired two-tailed Students t-Test).   

J. Cell Sci.: doi:10.1242/jcs.238048: Supplementary information
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